Internalization of the E-cadherin/catenin complex and scattering of human mammary carcinoma cells MCF-7/AZ after treatment with conditioned medium from human skin squamous carcinoma cells COLO 16.
T Boterberg, K M Vennekens, M Thienpont, M M Mareel, M E Bracke
{"title":"Internalization of the E-cadherin/catenin complex and scattering of human mammary carcinoma cells MCF-7/AZ after treatment with conditioned medium from human skin squamous carcinoma cells COLO 16.","authors":"T Boterberg, K M Vennekens, M Thienpont, M M Mareel, M E Bracke","doi":"10.3109/15419060009015001","DOIUrl":null,"url":null,"abstract":"<p><p>Cytokines and other paracrine or autocrine factors functionally modulate the invasion-suppressor and signal-transducing E-cadherin/catenin complex. We have used conditioned medium from human squamous carcinoma COLO 16 cells (CM COLO 16) as a source of such factors to modulate the E-cadherin/catenin complex in human breast carcinoma MCF-7 cells. CM COLO 16 induces scattering of MCF-7/AZ, but not of MCF-7/6 cells on tissue culture plastic substratum, and reduces aggregation of MCF-7/AZ cells in suspension. Insulin-like growth factor I counteracts this reduction of aggregation. Confocal laser scanning microscopy of immunocytochemical stainings shows loss of the honeycomb pattern of E-cadherin, alpha-catenin and beta-catenin, and internalization of those elements. Cell surface biotinylation shows a decrease in membrane-bound E-cadherin. Immunoprecipitation and cell fractionation show that the composition of the complex is maintained. Interleukin-1, interleukin-6, granulocyte-monocyte colony stimulating factor, stem cell factor, scatter factor/hepatocyte growth factor and transforming growth factor-beta, added separately to MCF-7/AZ cells, could not mimic the effects of CM COLO 16. Neither could we find evidence that the 80 kDa extracellular fragment of E-cadherin is implicated in scattering of MCF-7/AZ cells. This fragment is present in CM COLO 16, but it is also produced by the MCF-7/AZ cells themselves, even at higher levels. Our data point toward cytoplasmic internalization induced by paracrine factors as one of the downregulating mechanisms for the E-cadherin/catenin complex.</p>","PeriodicalId":79325,"journal":{"name":"Cell adhesion and communication","volume":"7 4","pages":"299-310"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/15419060009015001","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell adhesion and communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/15419060009015001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33
Abstract
Cytokines and other paracrine or autocrine factors functionally modulate the invasion-suppressor and signal-transducing E-cadherin/catenin complex. We have used conditioned medium from human squamous carcinoma COLO 16 cells (CM COLO 16) as a source of such factors to modulate the E-cadherin/catenin complex in human breast carcinoma MCF-7 cells. CM COLO 16 induces scattering of MCF-7/AZ, but not of MCF-7/6 cells on tissue culture plastic substratum, and reduces aggregation of MCF-7/AZ cells in suspension. Insulin-like growth factor I counteracts this reduction of aggregation. Confocal laser scanning microscopy of immunocytochemical stainings shows loss of the honeycomb pattern of E-cadherin, alpha-catenin and beta-catenin, and internalization of those elements. Cell surface biotinylation shows a decrease in membrane-bound E-cadherin. Immunoprecipitation and cell fractionation show that the composition of the complex is maintained. Interleukin-1, interleukin-6, granulocyte-monocyte colony stimulating factor, stem cell factor, scatter factor/hepatocyte growth factor and transforming growth factor-beta, added separately to MCF-7/AZ cells, could not mimic the effects of CM COLO 16. Neither could we find evidence that the 80 kDa extracellular fragment of E-cadherin is implicated in scattering of MCF-7/AZ cells. This fragment is present in CM COLO 16, but it is also produced by the MCF-7/AZ cells themselves, even at higher levels. Our data point toward cytoplasmic internalization induced by paracrine factors as one of the downregulating mechanisms for the E-cadherin/catenin complex.