Alan H Lazarus , Janet Ellis , John W Semple , Meera Mody , Andrew R Crow , John Freedman
{"title":"Comparison of platelet immunity in patients with SLE and with ITP","authors":"Alan H Lazarus , Janet Ellis , John W Semple , Meera Mody , Andrew R Crow , John Freedman","doi":"10.1016/S0955-3886(00)00004-7","DOIUrl":null,"url":null,"abstract":"<div><p>Idiopathic thrombocytopenic purpura (ITP) is characterized by the development of a specific anti-platelet autoantibody immune response mediating the development of thrombocytopenia. Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the production of a wide variety of autoantibodies. In 15–20% of SLE cases, patients develop thrombocytopenia which appears to be autoimmune in nature (SLE-TP). To better understand the pathogenesis of the thrombocytopenia associated with SLE, we investigated the overlapping platelet and cellular immune features between SLE and ITP. Thirty-one patients with SLE, eight with SLE-TP, and 17 with ITP, were studied and compared to 60 healthy controls. We evaluated platelet-associated IgG, platelet microparticles, reticulated platelets, platelet HLA-DR expression, in vivo cytokine levels, lymphocyte proliferation, and the T lymphocyte anti-platelet immune response in these patients. Patients with SLE-TP and those with ITP had increased platelet-associated IgG, an increased percentage of platelet microparticles, a higher percentage of reticulated platelets and larger platelets, suggesting antibody-mediated platelet destruction and increased platelet production. More than 50% of patients with ITP had increased HLA-DR on their platelet surface whereas subjects with SLE-TP did not. Analysis of serum cytokines demonstrated increased levels of IL-10, IL-15 and TNF-<em>α</em> in patients with SLE, but in those with ITP, only increased levels of IL-15 were seen, no increases in any of these cytokines were observed in patients with in SLE-TP. The ability of lymphocytes to proliferate in response to phorbol myristate acetate (PMA) stimulation was increased in SLE-TP, but was normal in both SLE and ITP. Lymphocytes from subjects with ITP displayed an increased ability to proliferate on exposure to platelets, in contrast, those with SLE-TP did not. While the number of subjects evaluated with SLE-TP was small, these data reveal a number of differences in the immunopathogenesis between SLE-TP and ITP.</p></div>","PeriodicalId":80242,"journal":{"name":"Transfusion science","volume":"22 1","pages":"Pages 19-27"},"PeriodicalIF":0.0000,"publicationDate":"2000-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0955-3886(00)00004-7","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transfusion science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955388600000047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41
Abstract
Idiopathic thrombocytopenic purpura (ITP) is characterized by the development of a specific anti-platelet autoantibody immune response mediating the development of thrombocytopenia. Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the production of a wide variety of autoantibodies. In 15–20% of SLE cases, patients develop thrombocytopenia which appears to be autoimmune in nature (SLE-TP). To better understand the pathogenesis of the thrombocytopenia associated with SLE, we investigated the overlapping platelet and cellular immune features between SLE and ITP. Thirty-one patients with SLE, eight with SLE-TP, and 17 with ITP, were studied and compared to 60 healthy controls. We evaluated platelet-associated IgG, platelet microparticles, reticulated platelets, platelet HLA-DR expression, in vivo cytokine levels, lymphocyte proliferation, and the T lymphocyte anti-platelet immune response in these patients. Patients with SLE-TP and those with ITP had increased platelet-associated IgG, an increased percentage of platelet microparticles, a higher percentage of reticulated platelets and larger platelets, suggesting antibody-mediated platelet destruction and increased platelet production. More than 50% of patients with ITP had increased HLA-DR on their platelet surface whereas subjects with SLE-TP did not. Analysis of serum cytokines demonstrated increased levels of IL-10, IL-15 and TNF-α in patients with SLE, but in those with ITP, only increased levels of IL-15 were seen, no increases in any of these cytokines were observed in patients with in SLE-TP. The ability of lymphocytes to proliferate in response to phorbol myristate acetate (PMA) stimulation was increased in SLE-TP, but was normal in both SLE and ITP. Lymphocytes from subjects with ITP displayed an increased ability to proliferate on exposure to platelets, in contrast, those with SLE-TP did not. While the number of subjects evaluated with SLE-TP was small, these data reveal a number of differences in the immunopathogenesis between SLE-TP and ITP.