A phylogenetic approach to RNA structure prediction.

V R Akmaev, S T Kelley, G D Stormo
{"title":"A phylogenetic approach to RNA structure prediction.","authors":"V R Akmaev,&nbsp;S T Kelley,&nbsp;G D Stormo","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Methods based on the Mutual Information statistic (MI methods) predict structure by looking for statistical correlations between sequence positions in a set of aligned sequences. Although MI methods are often quite effective, these methods ignore the underlying phylogenetic relationships of the sequences they analyze. Thus, they cannot distinguish between correlations due to structural interactions, and spurious correlations resulting from phylogenetic history. In this paper, we introduce a method analogous to MI that incorporates phylogenetic information. We show that this method accurately recovers the structures of well-known RNA molecules. We also demonstrate, with both real and simulated data, that this phylogenetically-based method outperforms standard MI methods, and improves the ability to distinguish interacting from non-interacting positions in RNA. This method is flexible, and may be applied to the prediction of protein structure given the appropriate evolutionary model. Because this method incorporates phylogenetic data, it also has the potential to be improved with the addition of more accurate phylogenetic information, although we show that even approximate phylogenies are helpful.</p>","PeriodicalId":79420,"journal":{"name":"Proceedings. International Conference on Intelligent Systems for Molecular Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1999-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Intelligent Systems for Molecular Biology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Methods based on the Mutual Information statistic (MI methods) predict structure by looking for statistical correlations between sequence positions in a set of aligned sequences. Although MI methods are often quite effective, these methods ignore the underlying phylogenetic relationships of the sequences they analyze. Thus, they cannot distinguish between correlations due to structural interactions, and spurious correlations resulting from phylogenetic history. In this paper, we introduce a method analogous to MI that incorporates phylogenetic information. We show that this method accurately recovers the structures of well-known RNA molecules. We also demonstrate, with both real and simulated data, that this phylogenetically-based method outperforms standard MI methods, and improves the ability to distinguish interacting from non-interacting positions in RNA. This method is flexible, and may be applied to the prediction of protein structure given the appropriate evolutionary model. Because this method incorporates phylogenetic data, it also has the potential to be improved with the addition of more accurate phylogenetic information, although we show that even approximate phylogenies are helpful.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RNA结构预测的系统发育方法。
基于互信息统计(MI)的方法通过寻找一组序列中序列位置之间的统计相关性来预测结构。尽管MI方法通常非常有效,但这些方法忽略了它们所分析序列的潜在系统发育关系。因此,他们无法区分由于结构相互作用而产生的相关性和由于系统发育历史而产生的虚假相关性。在本文中,我们引入了一种类似于MI的方法,该方法包含了系统发育信息。我们证明,这种方法准确地恢复了众所周知的RNA分子的结构。我们还通过真实和模拟数据证明,这种基于系统发育的方法优于标准的MI方法,并提高了区分RNA中相互作用和非相互作用位置的能力。该方法是灵活的,并可应用于预测蛋白质的结构给定适当的进化模型。由于该方法包含系统发育数据,因此它也有可能通过添加更准确的系统发育信息来改进,尽管我们表明即使是近似的系统发育也是有帮助的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reducing Mass Degeneracy in SAR by MS by Stable Isotopic Labeling Intelligent aids for parallel experiment planning and macromolecular crystallization. A practical algorithm for optimal inference of haplotypes from diploid populations. Analysis of yeast's ORF upstream regions by parallel processing, microarrays, and computational methods. Finding regulatory elements using joint likelihoods for sequence and expression profile data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1