Molecular mechanisms involved in the differentiation of spermatogenic stem cells.

K A Sutton
{"title":"Molecular mechanisms involved in the differentiation of spermatogenic stem cells.","authors":"K A Sutton","doi":"10.1530/ror.0.0050093","DOIUrl":null,"url":null,"abstract":"<p><p>In male mammals, spermatogenesis proceeds for the reproductive lifetime of the animal. The continuation of this process depends upon a pool of spermatogenic stem cells within the testes that undergo asymmetric division to both maintain the stem cell population and give rise to progenitors that will proceed through spermatogenesis to generate mature spermatozoa. Thus, the development of functional spermatozoa may be divided into two distinct stages. The second, the process of spermatogenesis, is dependent upon the first, the successful formation of spermatogenic stem cells. Although spermatogenesis is characterized by marked cellular differentiation, the initial stages of germ line differentiation involve an avoidance of the differentiation signals acting during embryo development. The germ line is set aside early in embryo development and, while the primordial germ cells remain refractory to the differentiation signals affecting the soma, they undergo a number of phenotypic shifts before and after colonizing the genital ridge. Upon colonization of the genital ridge, the somatic tissue of the male genital ridge directs the final differentiation events that result in the formation of spermatogenic stem cells. It is this cell population that provides the basis for the maintenance of spermatogenesis in the adult.</p>","PeriodicalId":79531,"journal":{"name":"Reviews of reproduction","volume":"5 2","pages":"93-8"},"PeriodicalIF":0.0000,"publicationDate":"2000-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1530/ror.0.0050093","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews of reproduction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1530/ror.0.0050093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

In male mammals, spermatogenesis proceeds for the reproductive lifetime of the animal. The continuation of this process depends upon a pool of spermatogenic stem cells within the testes that undergo asymmetric division to both maintain the stem cell population and give rise to progenitors that will proceed through spermatogenesis to generate mature spermatozoa. Thus, the development of functional spermatozoa may be divided into two distinct stages. The second, the process of spermatogenesis, is dependent upon the first, the successful formation of spermatogenic stem cells. Although spermatogenesis is characterized by marked cellular differentiation, the initial stages of germ line differentiation involve an avoidance of the differentiation signals acting during embryo development. The germ line is set aside early in embryo development and, while the primordial germ cells remain refractory to the differentiation signals affecting the soma, they undergo a number of phenotypic shifts before and after colonizing the genital ridge. Upon colonization of the genital ridge, the somatic tissue of the male genital ridge directs the final differentiation events that result in the formation of spermatogenic stem cells. It is this cell population that provides the basis for the maintenance of spermatogenesis in the adult.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生精干细胞分化的分子机制。
在雄性哺乳动物中,精子的发生贯穿整个动物的生殖周期。这一过程的继续取决于睾丸内的生精干细胞库,这些干细胞进行不对称分裂,既维持干细胞群,又产生祖细胞,祖细胞将通过精子发生产生成熟的精子。因此,功能精子的发育可分为两个不同的阶段。第二个因素,即精子发生的过程,取决于第一个因素,即生精干细胞的成功形成。尽管精子发生的特点是显著的细胞分化,但生殖系分化的初始阶段涉及在胚胎发育过程中避免分化信号的作用。生殖系在胚胎发育早期被搁置一边,虽然原始生殖细胞仍然对影响体细胞的分化信号不敏感,但它们在定植生殖嵴之前和之后经历了许多表型变化。在生殖嵴定植后,雄性生殖嵴的体细胞组织指导最终分化事件,导致生精干细胞的形成。正是这种细胞群为维持成人精子发生提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Is the action of inhibin mediated via a unique receptor? Function of steroidogenic factor 1 during development and differentiation of the reproductive system. Roles of KIT and KIT LIGAND in ovarian function. Role of mother-young interactions in the survival of offspring in domestic mammals. Control of the immunological environment of the uterus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1