Effect of oxidative pre-treatment on hydrogen spillover for a Ni/SiO2 catalyst

Abdel-Ghani Boudjahem , Mohammed M. Bettahar
{"title":"Effect of oxidative pre-treatment on hydrogen spillover for a Ni/SiO2 catalyst","authors":"Abdel-Ghani Boudjahem ,&nbsp;Mohammed M. Bettahar","doi":"10.1016/j.molcata.2016.11.014","DOIUrl":null,"url":null,"abstract":"<div><p>The chemisorption and hydrogenating properties of Ni/SiO<sub>2</sub> catalysts prepared by the hydrazine method then calcined at 400<!--> <!-->°C with various times were investigated. Metal dispersion and activity in benzene hydrogenation increased with increasing calcination time whereas desorbed amounts of hydrogen significantly decreased. Dilution of a calcined sample by the support led to a sharp increase of both hydrogen storage by the support and catalytic activity. Metal dispersion and hydrogen storage capacity influenced the reaction mechanisms of hydrogenation of benzene which, therefore, is believed to occur on the metal phase or/and on the support by the hydrogen spillover mechanism. The metal active phase would be composed of an ensemble of metallic and oxidized nickel species.</p></div>","PeriodicalId":370,"journal":{"name":"Journal of Molecular Catalysis A: Chemical","volume":null,"pages":null},"PeriodicalIF":5.0620,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.molcata.2016.11.014","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Catalysis A: Chemical","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381116916304885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

The chemisorption and hydrogenating properties of Ni/SiO2 catalysts prepared by the hydrazine method then calcined at 400 °C with various times were investigated. Metal dispersion and activity in benzene hydrogenation increased with increasing calcination time whereas desorbed amounts of hydrogen significantly decreased. Dilution of a calcined sample by the support led to a sharp increase of both hydrogen storage by the support and catalytic activity. Metal dispersion and hydrogen storage capacity influenced the reaction mechanisms of hydrogenation of benzene which, therefore, is believed to occur on the metal phase or/and on the support by the hydrogen spillover mechanism. The metal active phase would be composed of an ensemble of metallic and oxidized nickel species.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氧化预处理对Ni/SiO2催化剂氢外溢的影响
研究了肼法制备的Ni/SiO2催化剂在400℃煅烧不同时间下的化学吸附和加氢性能。随着焙烧时间的延长,金属在苯加氢过程中的分散性和活性增加,而解吸氢量显著减少。煅烧后的样品被载体稀释后,载体的储氢量和催化活性都急剧增加。金属的分散性和储氢能力影响了苯加氢反应的机理,因此,通过氢溢出机理,苯加氢反应发生在金属相或/和载体上。金属活性相由金属镍和氧化镍组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
2.8 months
期刊介绍: The Journal of Molecular Catalysis A: Chemical publishes original, rigorous, and scholarly full papers that examine the molecular and atomic aspects of catalytic activation and reaction mechanisms in homogeneous catalysis, heterogeneous catalysis (including supported organometallic catalysis), and computational catalysis.
期刊最新文献
Study on Regeneration of Commercial V2O5-WO3/TiO2 Catalyst for Arsenic Poisoning Recent Progress in Computer-aided Design and Engineering of Glycosidases Research on the Influence of Calcined Titanium Dioxide to the Newly-Produced Selective Catalytic Reduction Catalyst and the Mechanism Catalytic Performances of Mo/HZSM-5 Zeolites in Methane and Methanol Co-aromatization after Modification by Tetrapropylammonium hydroxide Impacts of H2O and CO2 on NOx Storage-Reduction Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1