Linear modeling of genetic networks from experimental data.

E P van Someren, L F Wessels, M J Reinders
{"title":"Linear modeling of genetic networks from experimental data.","authors":"E P van Someren,&nbsp;L F Wessels,&nbsp;M J Reinders","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, the regulatory interactions between genes are modeled by a linear genetic network that is estimated from gene expression data. The inference of such a genetic network is hampered by the dimensionality problem. This problem is inherent in all gene expression data since the number of genes by far exceeds the number of measured time points. Consequently, there are infinitely many solutions that fit the data set perfectly. In this paper, this problem is tackled by combining genes with similar expression profiles in a single prototypical 'gene'. Instead of modeling the genes individually, the relations between prototypical genes are modeled. In this way, genes that cannot be distinguished based on their expression profiles are grouped together and their common control action is modeled instead. This process reduces the number of signals and imposes a structure on the model that is supported by the fact that biological genetic networks are thought to be redundant and sparsely connected. In essence, the ambiguity in model solutions is represented explicitly by providing a generalized model that expresses the basic regulatory interactions between groups of similarly expressed genes. The modeling approach is illustrated on artificial as well as real data.</p>","PeriodicalId":79420,"journal":{"name":"Proceedings. International Conference on Intelligent Systems for Molecular Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Intelligent Systems for Molecular Biology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the regulatory interactions between genes are modeled by a linear genetic network that is estimated from gene expression data. The inference of such a genetic network is hampered by the dimensionality problem. This problem is inherent in all gene expression data since the number of genes by far exceeds the number of measured time points. Consequently, there are infinitely many solutions that fit the data set perfectly. In this paper, this problem is tackled by combining genes with similar expression profiles in a single prototypical 'gene'. Instead of modeling the genes individually, the relations between prototypical genes are modeled. In this way, genes that cannot be distinguished based on their expression profiles are grouped together and their common control action is modeled instead. This process reduces the number of signals and imposes a structure on the model that is supported by the fact that biological genetic networks are thought to be redundant and sparsely connected. In essence, the ambiguity in model solutions is represented explicitly by providing a generalized model that expresses the basic regulatory interactions between groups of similarly expressed genes. The modeling approach is illustrated on artificial as well as real data.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于实验数据的遗传网络线性建模。
在本文中,基因之间的调节相互作用是由一个线性遗传网络,估计从基因表达数据建模。这种遗传网络的推理受到维数问题的阻碍。这个问题在所有基因表达数据中都是固有的,因为基因的数量远远超过了测量时间点的数量。因此,有无限多个解可以完美地拟合数据集。在本文中,通过将具有相似表达谱的基因组合在单个原型“基因”中来解决这个问题。与单个基因建模不同,原型基因之间的关系被建模。通过这种方式,不能根据表达谱来区分的基因被分组在一起,而它们共同的控制作用被建模代替。这一过程减少了信号的数量,并在模型上强加了一种结构,这种结构得到了生物遗传网络被认为是冗余的和稀疏连接的事实的支持。从本质上讲,通过提供一个表达相似表达基因组之间基本调控相互作用的广义模型来明确表示模型解决方案中的模糊性。通过人工数据和实际数据对建模方法进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reducing Mass Degeneracy in SAR by MS by Stable Isotopic Labeling Intelligent aids for parallel experiment planning and macromolecular crystallization. A practical algorithm for optimal inference of haplotypes from diploid populations. Analysis of yeast's ORF upstream regions by parallel processing, microarrays, and computational methods. Finding regulatory elements using joint likelihoods for sequence and expression profile data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1