Revealing Charge-Transfer Dynamics at Buried Charge-Selective Heterointerface in Highly Effective Perovskite Solar Cells

IF 4.8 2区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry Letters Pub Date : 2023-08-30 DOI:10.1021/acs.jpclett.3c02138
Di Li, Shaobing Xiong, Bo Peng, Weimin Liu*, Bo Li* and Qinye Bao*, 
{"title":"Revealing Charge-Transfer Dynamics at Buried Charge-Selective Heterointerface in Highly Effective Perovskite Solar Cells","authors":"Di Li,&nbsp;Shaobing Xiong,&nbsp;Bo Peng,&nbsp;Weimin Liu*,&nbsp;Bo Li* and Qinye Bao*,&nbsp;","doi":"10.1021/acs.jpclett.3c02138","DOIUrl":null,"url":null,"abstract":"<p >The suboptimal carrier dynamics at the heterointerface between the perovskite and charge transport layer severely limit further performance enhancement of the state-of-the-art perovskite solar cells (PSCs). Herein, we completely map charge carrier extraction and recombination kinetics over a broad time range at buried electron-selective heterointerfaces via ultrafast transient technologies. It is revealed that the heterointerfaces carefully contain the electronic processes of free charge generation in perovskite within ∼2.8 ps, relaxation process of trap-state induced electron capturing less than ∼10.0 ps, electron extraction from perovskite to SnO<sub>2</sub> within ∼194 ps, trap-assisted recombination within ∼2047 ps, and recombination between back-injected electrons and remaining holes within ∼8.4 ns. Moreover, we further demonstrate that the inserted poly(vinyl alcohol) (PVA) thin layer can effectively enhance the electron extraction from perovskite to SnO<sub>2</sub>, block the undesired electron back injection, and significantly suppress the nonradiative recombination, contributing to the improved device parameters of photovoltage and fill factor. This work sheds light on charge-transfer limitations at the perovskite buried heterointerface and provides an effective guide of ideal heterointerface design for promoting charge transfer and improving PSC performance.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"14 35","pages":"7953–7959"},"PeriodicalIF":4.8000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.3c02138","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The suboptimal carrier dynamics at the heterointerface between the perovskite and charge transport layer severely limit further performance enhancement of the state-of-the-art perovskite solar cells (PSCs). Herein, we completely map charge carrier extraction and recombination kinetics over a broad time range at buried electron-selective heterointerfaces via ultrafast transient technologies. It is revealed that the heterointerfaces carefully contain the electronic processes of free charge generation in perovskite within ∼2.8 ps, relaxation process of trap-state induced electron capturing less than ∼10.0 ps, electron extraction from perovskite to SnO2 within ∼194 ps, trap-assisted recombination within ∼2047 ps, and recombination between back-injected electrons and remaining holes within ∼8.4 ns. Moreover, we further demonstrate that the inserted poly(vinyl alcohol) (PVA) thin layer can effectively enhance the electron extraction from perovskite to SnO2, block the undesired electron back injection, and significantly suppress the nonradiative recombination, contributing to the improved device parameters of photovoltage and fill factor. This work sheds light on charge-transfer limitations at the perovskite buried heterointerface and provides an effective guide of ideal heterointerface design for promoting charge transfer and improving PSC performance.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭示高效钙钛矿太阳能电池中埋藏电荷选择异质界面的电荷转移动力学
钙钛矿和电荷传输层之间的异质界面上的次优载流子动力学严重限制了最先进的钙钛矿太阳能电池(PSCs)的进一步性能提高。在此,我们通过超快瞬态技术完整地绘制了埋藏电子选择异质界面在宽时间范围内的载流子提取和重组动力学。结果表明,异质界面包含了钙钛矿在~ 2.8 ps内产生自由电荷的电子过程、阱态诱导电子捕获小于~ 10.0 ps的弛豫过程、钙钛矿在~ 194 ps内向SnO2的电子提取过程、阱辅助复合过程在~ 2047 ps内以及回注电子与剩余空穴在~ 8.4 ns内的复合过程。此外,我们进一步证明,插入的聚乙烯醇(PVA)薄层可以有效地增强钙钛矿向SnO2的电子提取,阻止不希望的电子回注,并显著抑制非辐射复合,有助于提高器件的光电压和填充因子参数。本研究揭示了钙钛矿埋藏异质界面的电荷转移限制,为设计理想的异质界面促进电荷转移和提高PSC性能提供了有效的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
期刊最新文献
Different Photodissociation Mechanisms in Fe(CO)5 and Cr(CO)6 Evidenced with Femtosecond Valence Photoelectron Spectroscopy and Excited-State Molecular Dynamics Simulations Protonation Weakens the Influence of Ribose on Triplet Decay of 2-Thiocytidine Ion Diffusion Reveals Heterogeneous Viscosity in Nanostructured Ionic Liquids Controlling the Selectivity of Reaction Products by Transmetalation on a Ag(111) Substrate Upconversion on the Micrometer Scale: Impact of Local Heterogeneity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1