{"title":"\"Impoverished\" and \"enriched\" living conditions influence the proliferation and survival of neurons in crayfish brain.","authors":"R Sandeman, D Sandeman","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>New neurons are added to two bilateral clusters of neurons in crayfish brain throughout their lives. These interneurons are associated with the olfactory and accessory lobes, areas of the brain that receive primary olfactory information and higher order inputs from the visual and tactile receptor systems. The rate of cell proliferation in these four clusters, revealed by BrdU labeling, is sensitive to the living conditions of the animals: individuals isolated in small spaces (impoverished condition) exhibit a lower rate of cell proliferation in comparison to their siblings living together in larger areas (enriched condition), although both groups were fed to satiation. Reduction in the rate of proliferation can be measured 1 to 2 weeks after the animals are subjected to the impoverished condition. Counts of the labeled neurons that survive after 4 weeks of subjection to the two conditions show that fewer new neurons survive in the brains of animals that have lived for 2 weeks in the impoverished condition in comparison to their siblings living in the enriched conditions. Factors such as surface area, depth of water, and social interaction can all play a role in determining both the rate of new neuron production and the incorporation of the new neurons into the brain of freshwater crayfish. The results indicate a high degree of neuronal plasticity in the crayfish brain that is highly sensitive to the conditions under which the animals are kept.</p>","PeriodicalId":16540,"journal":{"name":"Journal of neurobiology","volume":"45 4","pages":"215-26"},"PeriodicalIF":0.0000,"publicationDate":"2000-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurobiology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
New neurons are added to two bilateral clusters of neurons in crayfish brain throughout their lives. These interneurons are associated with the olfactory and accessory lobes, areas of the brain that receive primary olfactory information and higher order inputs from the visual and tactile receptor systems. The rate of cell proliferation in these four clusters, revealed by BrdU labeling, is sensitive to the living conditions of the animals: individuals isolated in small spaces (impoverished condition) exhibit a lower rate of cell proliferation in comparison to their siblings living together in larger areas (enriched condition), although both groups were fed to satiation. Reduction in the rate of proliferation can be measured 1 to 2 weeks after the animals are subjected to the impoverished condition. Counts of the labeled neurons that survive after 4 weeks of subjection to the two conditions show that fewer new neurons survive in the brains of animals that have lived for 2 weeks in the impoverished condition in comparison to their siblings living in the enriched conditions. Factors such as surface area, depth of water, and social interaction can all play a role in determining both the rate of new neuron production and the incorporation of the new neurons into the brain of freshwater crayfish. The results indicate a high degree of neuronal plasticity in the crayfish brain that is highly sensitive to the conditions under which the animals are kept.