{"title":"Electrostriction and dynamics of solid supported lipid films","authors":"Tibor Hianik","doi":"10.1016/S1389-0352(00)00015-5","DOIUrl":null,"url":null,"abstract":"<div><p><span>This review reports the significance of bilayer lipid membranes on a solid support (sBLM) for the construction of biosensors. The methods of formation of lipid membranes on different solid supports including different metals (silver, gold, stainless steel), agar and conducting polymers are presented. Several examples of the application of electrostriction and dielectric relaxation methods for the study of mechanical properties and dynamics of solid supported </span>bilayers have been shown. We demonstrated that these methods are useful for determination of the binding of enzymes and antibodies to sBLM, for the study of hybridization of nucleic acids on membrane surfaces and for the study of physical properties of modified supported membranes.</p></div>","PeriodicalId":101090,"journal":{"name":"Reviews in Molecular Biotechnology","volume":"74 3","pages":"Pages 189-205"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1389-0352(00)00015-5","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Molecular Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389035200000155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
This review reports the significance of bilayer lipid membranes on a solid support (sBLM) for the construction of biosensors. The methods of formation of lipid membranes on different solid supports including different metals (silver, gold, stainless steel), agar and conducting polymers are presented. Several examples of the application of electrostriction and dielectric relaxation methods for the study of mechanical properties and dynamics of solid supported bilayers have been shown. We demonstrated that these methods are useful for determination of the binding of enzymes and antibodies to sBLM, for the study of hybridization of nucleic acids on membrane surfaces and for the study of physical properties of modified supported membranes.