Constructing a useful tool for characterizing amino acid conformers by means of quantum chemical and graph theory indices

Constanza Cárdenas , Mateo Obregón , Eugenio-José Llanos , Eduardo Machado , Hugo-Javier Bohórquez , Jose-Luis Villaveces , Manuel-Elkin Patarroyo
{"title":"Constructing a useful tool for characterizing amino acid conformers by means of quantum chemical and graph theory indices","authors":"Constanza Cárdenas ,&nbsp;Mateo Obregón ,&nbsp;Eugenio-José Llanos ,&nbsp;Eduardo Machado ,&nbsp;Hugo-Javier Bohórquez ,&nbsp;Jose-Luis Villaveces ,&nbsp;Manuel-Elkin Patarroyo","doi":"10.1016/S0097-8485(02)00052-9","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this work is to construct a tool to assist in the prediction of peptidic properties resulting from the exchange of two amino acids in a proteic chain. In the past others have used experimental properties for this purpose. However, the nature of these data sets severely limits their access to important properties pertaining to secondary structure, and hence the indices used cannot characterize different backbone conformers like α helix and β strands, or side-chain conformations like <em>gauche</em>+, <em>gauche</em>− and <em>trans</em>. In this study we explore the importance of backbone and side-chain angles with regard to conformer similarity measured with theoretical properties calculated in an ab initio manner. For each of the 20 genetically encoded amino acids, we studied five conformers that correspond to α helical and β strand structures, with three different side chain conformations for each, defined solely by their angles <em>Φ</em>, <em>Ψ</em> and <em>χ</em><sub>1</sub>. This methodology allowed each of the 108 conformers to be represented by a mathematical object without ambiguity. The peptidic chain was emulated using two capping models to simulate the effect of nearest neighbors. These are OHCX<sub>aa</sub>NH<sub>2</sub> and AlaX<sub>aa</sub>Ala, where X<sub>aa</sub> is the conformer of interest. We then calculated 40 ab initio quantum chemical and graph theory indices for each backbone-side-chain conformer to obtain a characterization and classification scheme. We found that: (1) while backbone structure is very important to conformer similarity, side-chain conformations do not cluster together in a top-level manner; (2) amino acids with π electrons group together independent of backbone conformation.</p></div>","PeriodicalId":79331,"journal":{"name":"Computers & chemistry","volume":"26 6","pages":"Pages 667-682"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0097-8485(02)00052-9","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097848502000529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The aim of this work is to construct a tool to assist in the prediction of peptidic properties resulting from the exchange of two amino acids in a proteic chain. In the past others have used experimental properties for this purpose. However, the nature of these data sets severely limits their access to important properties pertaining to secondary structure, and hence the indices used cannot characterize different backbone conformers like α helix and β strands, or side-chain conformations like gauche+, gauche− and trans. In this study we explore the importance of backbone and side-chain angles with regard to conformer similarity measured with theoretical properties calculated in an ab initio manner. For each of the 20 genetically encoded amino acids, we studied five conformers that correspond to α helical and β strand structures, with three different side chain conformations for each, defined solely by their angles Φ, Ψ and χ1. This methodology allowed each of the 108 conformers to be represented by a mathematical object without ambiguity. The peptidic chain was emulated using two capping models to simulate the effect of nearest neighbors. These are OHCXaaNH2 and AlaXaaAla, where Xaa is the conformer of interest. We then calculated 40 ab initio quantum chemical and graph theory indices for each backbone-side-chain conformer to obtain a characterization and classification scheme. We found that: (1) while backbone structure is very important to conformer similarity, side-chain conformations do not cluster together in a top-level manner; (2) amino acids with π electrons group together independent of backbone conformation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用量子化学和图论指标,构建了一个有用的表征氨基酸构象的工具
这项工作的目的是构建一种工具,以协助预测由蛋白质链中两个氨基酸交换产生的肽性质。在过去,有人利用实验性质来达到这个目的。然而,这些数据集的性质严重限制了它们对二级结构的重要性质的获取,因此所使用的指数不能表征不同的主链构象,如α螺旋和β链,或侧链构象,如间扭式+,间扭式-和反式。在这项研究中,我们探讨了主链角和侧链角的重要性,考虑到以从头算的方式计算的理论性质测量的构象相似性。对于20种遗传编码氨基酸中的每一种,我们研究了对应于α螺旋和β链结构的5种构象,每种构象具有3种不同的侧链构象,仅由它们的角度Φ, Ψ和χ1定义。这种方法允许108个构象中的每一个都用一个数学对象来表示,没有歧义。采用两种旋盖模型对肽链进行了模拟,以模拟近邻效应。它们是OHCXaaNH2和AlaXaaAla,其中Xaa是我们感兴趣的构象。然后,我们计算了40个从头算量子化学和图论指标为每个骨干侧链构象,以获得表征和分类方案。研究发现:(1)虽然主链结构对构象相似度有重要影响,但侧链构象并不以顶层方式聚集在一起;(2)具有π电子的氨基酸不依赖于主链构象而聚集在一起。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Instructions to authors Author Index Keyword Index Volume contents New molecular surface-based 3D-QSAR method using Kohonen neural network and 3-way PLS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1