{"title":"Imitative learning in Japanese quail (Coturnix japonica) using the bidirectional control procedure.","authors":"Chana K Akins, Emily D Klein, Thomas R Zentall","doi":"10.3758/bf03192836","DOIUrl":null,"url":null,"abstract":"<p><p>In the bidirectional control procedure, observers are exposed to a conspecific demonstrator responding to a manipulandum in one of two directions (e.g., left vs. right). This procedure controls for socially mediated effects (the mere presence of a conspecific) and stimulus enhancement (attention drawn to a manipulandum by its movement), and it has the added advantage of being symmetrical (the two different responses are similar in topography). Imitative learning is demonstrated when the observers make the response in the direction that they observed it being made. Recently, however, it has been suggested that when such evidence is found with a predominantly olfactory animal, such as the rat, it may result artifactually from odor cues left on one side of the manipulandum by the demonstrator. In the present experiment, we found that Japanese quail, for which odor cues are not likely to play a role, also showed significant correspondence between the direction in which the demonstrator and the observer push a screen to gain access to reward. Furthermore, control quail that observed the screen move, when the movement of the screen was not produced by the demonstrator, did not show similar correspondence between the direction of screen movement observed and that performed by the observer. Thus, with the appropriate control, the bidirectional procedure appears to be useful for studying imitation in avian species.</p>","PeriodicalId":7824,"journal":{"name":"Animal Learning & Behavior","volume":"30 3","pages":"275-81"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3758/bf03192836","citationCount":"56","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Learning & Behavior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3758/bf03192836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56
Abstract
In the bidirectional control procedure, observers are exposed to a conspecific demonstrator responding to a manipulandum in one of two directions (e.g., left vs. right). This procedure controls for socially mediated effects (the mere presence of a conspecific) and stimulus enhancement (attention drawn to a manipulandum by its movement), and it has the added advantage of being symmetrical (the two different responses are similar in topography). Imitative learning is demonstrated when the observers make the response in the direction that they observed it being made. Recently, however, it has been suggested that when such evidence is found with a predominantly olfactory animal, such as the rat, it may result artifactually from odor cues left on one side of the manipulandum by the demonstrator. In the present experiment, we found that Japanese quail, for which odor cues are not likely to play a role, also showed significant correspondence between the direction in which the demonstrator and the observer push a screen to gain access to reward. Furthermore, control quail that observed the screen move, when the movement of the screen was not produced by the demonstrator, did not show similar correspondence between the direction of screen movement observed and that performed by the observer. Thus, with the appropriate control, the bidirectional procedure appears to be useful for studying imitation in avian species.