A model for plant lighting system selection.

IF 1.5 4区 农林科学 Q2 Agricultural and Biological Sciences Transactions of the Asae Pub Date : 2002-01-01 DOI:10.13031/2013.7873
D E Ciolkosz, L D Albright, J C Sager, R W Langhans
{"title":"A model for plant lighting system selection.","authors":"D E Ciolkosz, L D Albright, J C Sager, R W Langhans","doi":"10.13031/2013.7873","DOIUrl":null,"url":null,"abstract":"<p><p>A decision model is presented that compares lighting systems for a plant growth scenario and chooses the most appropriate system from a given set of possible choices. The model utilizes a Multiple Attribute Utility Theory approach, and incorporates expert input and performance simulations to calculate a utility value for each lighting system being considered. The system with the highest utility is deemed the most appropriate system. The model was applied to a greenhouse scenario, and analyses were conducted to test the model's output for validity. Parameter variation indicates that the model performed as expected. Analysis of model output indicates that differences in utility among the candidate lighting systems were sufficiently large to give confidence that the model's order of selection was valid.</p>","PeriodicalId":54420,"journal":{"name":"Transactions of the Asae","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.13031/2013.7873","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Asae","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.13031/2013.7873","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 4

Abstract

A decision model is presented that compares lighting systems for a plant growth scenario and chooses the most appropriate system from a given set of possible choices. The model utilizes a Multiple Attribute Utility Theory approach, and incorporates expert input and performance simulations to calculate a utility value for each lighting system being considered. The system with the highest utility is deemed the most appropriate system. The model was applied to a greenhouse scenario, and analyses were conducted to test the model's output for validity. Parameter variation indicates that the model performed as expected. Analysis of model output indicates that differences in utility among the candidate lighting systems were sufficiently large to give confidence that the model's order of selection was valid.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
植物照明系统选择模型
本文介绍了一个决策模型,该模型对植物生长情景下的照明系统进行比较,并从给定的一系列可能选择中选出最合适的系统。该模型采用多属性效用理论方法,结合专家意见和性能模拟,计算出每个照明系统的效用值。效用最高的系统被认为是最合适的系统。该模型适用于温室场景,并进行了分析,以测试模型输出的有效性。参数变化表明,模型的表现符合预期。对模型输出的分析表明,候选照明系统之间的效用差异很大,足以让人相信模型的选择顺序是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Transactions of the Asae
Transactions of the Asae 农林科学-农业工程
CiteScore
2.30
自引率
0.00%
发文量
0
审稿时长
12.0 months
期刊介绍: This peer-reviewed journal publishes research that advances the engineering of agricultural, food, and biological systems. Submissions must include original data, analysis or design, or synthesis of existing information; research information for the improvement of education, design, construction, or manufacturing practice; or significant and convincing evidence that confirms and strengthens the findings of others or that revises ideas or challenges accepted theory.
期刊最新文献
Adaptation of SUBSTOR for controlled-environment potato production with elevated carbon dioxide. Evaluation of two fiber optic-based solar collection and distribution systems for advanced space life support. Machine vision extracted plant movement for early detection of plant water stress. A model for plant lighting system selection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1