Atomic Positional Embedding-Based Transformer Model for Predicting the Density of States of Crystalline Materials

IF 4.8 2区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry Letters Pub Date : 2023-08-30 DOI:10.1021/acs.jpclett.3c02036
Yaning Cui, Kang Chen, Lingyao Zhang, Haotian Wang, Lei Bai, David Elliston and Wei Ren*, 
{"title":"Atomic Positional Embedding-Based Transformer Model for Predicting the Density of States of Crystalline Materials","authors":"Yaning Cui,&nbsp;Kang Chen,&nbsp;Lingyao Zhang,&nbsp;Haotian Wang,&nbsp;Lei Bai,&nbsp;David Elliston and Wei Ren*,&nbsp;","doi":"10.1021/acs.jpclett.3c02036","DOIUrl":null,"url":null,"abstract":"<p >The rapid advancement of machine learning has revolutionized quite a few science fields, leading to a surge in the development of highly efficient and accurate materials discovery methods. Recently, predictions of multiple related properties have received attention, with a particular emphasis on spectral properties, where the electronic density of states (DOS) stands out as the fundamental data with enormous potential to advance our understanding of crystalline materials. Leveraging the power of the Transformer framework, we introduce an Atomic Positional Embedding-Based Transformer (APET), which surpasses existing state-of-the-art models for predicting <i>ab initio</i> DOS. APET utilizes atomic periodical positions as its positional embedding, which incorporates all of the structural information in a crystal, providing a more complete and accurate representation. Furthermore, the interpretability of APET enables us to discover the underlying physical properties of materials with greater precision and accuracy.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"14 35","pages":"7924–7930"},"PeriodicalIF":4.8000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.3c02036","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid advancement of machine learning has revolutionized quite a few science fields, leading to a surge in the development of highly efficient and accurate materials discovery methods. Recently, predictions of multiple related properties have received attention, with a particular emphasis on spectral properties, where the electronic density of states (DOS) stands out as the fundamental data with enormous potential to advance our understanding of crystalline materials. Leveraging the power of the Transformer framework, we introduce an Atomic Positional Embedding-Based Transformer (APET), which surpasses existing state-of-the-art models for predicting ab initio DOS. APET utilizes atomic periodical positions as its positional embedding, which incorporates all of the structural information in a crystal, providing a more complete and accurate representation. Furthermore, the interpretability of APET enables us to discover the underlying physical properties of materials with greater precision and accuracy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于原子位置嵌入的晶体材料态密度预测变压器模型
机器学习的快速发展已经彻底改变了许多科学领域,导致高效和准确的材料发现方法的发展激增。最近,对多种相关性质的预测受到了关注,特别强调光谱性质,其中电子态密度(DOS)作为基础数据脱颖而出,具有巨大的潜力,可以促进我们对晶体材料的理解。利用Transformer框架的强大功能,我们引入了一个基于原子位置嵌入的Transformer (APET),它超越了用于从头开始预测DOS的现有最先进模型。APET利用原子周期位置作为其位置嵌入,它包含了晶体中所有的结构信息,提供了更完整和准确的表示。此外,APET的可解释性使我们能够更精确和准确地发现材料的潜在物理性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
期刊最新文献
Chemistry at Oxide/Water Interfaces: The Role of Interfacial Water Folding and Misfolding Dynamics of Irisin Protein Revealed by Single-Molecule Magnetic Tweezers State Tracking in Nonadiabatic Molecular Dynamics Using Only Forces and Energies Dielectric Barrier Corona Activation of Electrical Discharge in a Cavitating Liquid X-ray-Induced Molecular Catapult: Ultrafast Dynamics Driven by Lightweight Linkages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1