P F Ambros, G Méhes, Inge M Ambros, Andrea Luegmayr, Ruth Ladenstein, H Gadner
{"title":"[Detection, quantification and characterization of disseminated tumor cells].","authors":"P F Ambros, G Méhes, Inge M Ambros, Andrea Luegmayr, Ruth Ladenstein, H Gadner","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>There are different reasons why the detection of disseminated tumor cells (DTCs) in the hematopoetic system is important. On the one hand the detection of disseminated tumor cells can provide vital information about a tumor's tendency to develop metastases. In some localized epithelial but also in embryonic tumors, for example a correlation between disseminated tumor cells and unfavorable outcome was observed (6, 14). These studies are based on the assumption that those tumor cells which appear in the hematopoetic system at a very early stage are responsible for the development of metastases. Another important aspect is the monitoring of the disease response to cytotoxic drugs by quantifying DTCs. During and after therapy there is no other possibility (except for an operation) to either directly analyze the effects the therapy has on the tumor cells or to determine their biological characteristics. The dissemination in the hematopoetic system, however, reveals the response to therapy and the biological features of the tumor cells. The prerequisites for such bone-marrow diagnosis, however, is the unequivocal identification of disseminated tumor cells. So in order to avoid false positive results (which are a risk in bone-marrow diagnostics), a system was developed to distinguish tumor cells from non-neoplastic cells and to facilitate insights into the biological make-up of tumor cells (2, 11).</p>","PeriodicalId":75382,"journal":{"name":"Acta medica Austriaca. Supplement","volume":"59 ","pages":"58-61"},"PeriodicalIF":0.0000,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta medica Austriaca. Supplement","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
There are different reasons why the detection of disseminated tumor cells (DTCs) in the hematopoetic system is important. On the one hand the detection of disseminated tumor cells can provide vital information about a tumor's tendency to develop metastases. In some localized epithelial but also in embryonic tumors, for example a correlation between disseminated tumor cells and unfavorable outcome was observed (6, 14). These studies are based on the assumption that those tumor cells which appear in the hematopoetic system at a very early stage are responsible for the development of metastases. Another important aspect is the monitoring of the disease response to cytotoxic drugs by quantifying DTCs. During and after therapy there is no other possibility (except for an operation) to either directly analyze the effects the therapy has on the tumor cells or to determine their biological characteristics. The dissemination in the hematopoetic system, however, reveals the response to therapy and the biological features of the tumor cells. The prerequisites for such bone-marrow diagnosis, however, is the unequivocal identification of disseminated tumor cells. So in order to avoid false positive results (which are a risk in bone-marrow diagnostics), a system was developed to distinguish tumor cells from non-neoplastic cells and to facilitate insights into the biological make-up of tumor cells (2, 11).