Leukotriene C(4) synthase.

IF 2.9 4区 医学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Prostaglandins, leukotrienes, and essential fatty acids Pub Date : 2003-08-01 DOI:10.1016/s0952-3278(03)00071-1
Bing K Lam
{"title":"Leukotriene C(4) synthase.","authors":"Bing K Lam","doi":"10.1016/s0952-3278(03)00071-1","DOIUrl":null,"url":null,"abstract":"<p><p>LTC(4) synthase conjugates LTA(4) with glutathione (GSH) to form LTC(4), the parent compound of the cysteinyl leukotrienes. LTC(4) synthase is a membrane protein that functions as a non-covalent homodimer of two 18-kDa polypeptides. The enzymatic activity of LTC(4) synthase is augmented by Mg(2+) and inhibited by Co(2+) and the FLAP inhibitor MK-886. The K(m) and V(max) values of human LTC(4) synthase are 3.6 microM and 1.3 micromol/mg/min for LTA(4) and 1.6 mM and 2.7 micromol/mg/min for GSH, respectively. The deduced amino acid sequence and the predicted secondary structure of LTC(4) synthase share significant homology to FLAP, mGST-2, and mGST-3. Site-directed mutagenesis of LTC(4) synthase suggests that Arg-51 is involved in opening the epoxide ring of LTA(4) and Tyr-93 in GSH thiolate anion formation during catalytic conjugation. LTC(4) synthase is a TATA-less gene whose transcription involved both cell- and non-specific regulatory elements. LTC(4) synthase gene disrupted mice grow normally, and are attenuated for innate and adaptive immune inflammatory permeability responses.</p>","PeriodicalId":20659,"journal":{"name":"Prostaglandins, leukotrienes, and essential fatty acids","volume":"69 2-3","pages":"111-6"},"PeriodicalIF":2.9000,"publicationDate":"2003-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/s0952-3278(03)00071-1","citationCount":"78","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prostaglandins, leukotrienes, and essential fatty acids","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/s0952-3278(03)00071-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 78

Abstract

LTC(4) synthase conjugates LTA(4) with glutathione (GSH) to form LTC(4), the parent compound of the cysteinyl leukotrienes. LTC(4) synthase is a membrane protein that functions as a non-covalent homodimer of two 18-kDa polypeptides. The enzymatic activity of LTC(4) synthase is augmented by Mg(2+) and inhibited by Co(2+) and the FLAP inhibitor MK-886. The K(m) and V(max) values of human LTC(4) synthase are 3.6 microM and 1.3 micromol/mg/min for LTA(4) and 1.6 mM and 2.7 micromol/mg/min for GSH, respectively. The deduced amino acid sequence and the predicted secondary structure of LTC(4) synthase share significant homology to FLAP, mGST-2, and mGST-3. Site-directed mutagenesis of LTC(4) synthase suggests that Arg-51 is involved in opening the epoxide ring of LTA(4) and Tyr-93 in GSH thiolate anion formation during catalytic conjugation. LTC(4) synthase is a TATA-less gene whose transcription involved both cell- and non-specific regulatory elements. LTC(4) synthase gene disrupted mice grow normally, and are attenuated for innate and adaptive immune inflammatory permeability responses.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
白三烯C(4)合成酶。
LTC(4)合成酶将LTA(4)与谷胱甘肽(GSH)结合形成LTC(4),这是半胱氨酸白三烯的母体化合物。LTC(4)合成酶是一种膜蛋白,其功能为两个18kda多肽的非共价同二聚体。LTC(4)合成酶的酶活性被Mg(2+)增强,被Co(2+)和FLAP抑制剂MK-886抑制。人LTC(4)合成酶对LTA(4)的K(m)和V(max)值分别为3.6和1.3微mol/mg/min,对GSH的K(m)和V(max)值分别为1.6和2.7微mol/mg/min。LTC(4)合成酶的氨基酸序列和二级结构与FLAP、mGST-2和mGST-3具有显著的同源性。LTC(4)合成酶的位点定向突变表明,在催化偶联过程中,Arg-51参与打开LTA(4)和Tyr-93的环氧环,形成GSH硫代阴离子。LTC(4)合成酶是一个TATA-less基因,其转录涉及细胞和非特异性调控元件。LTC(4)合成酶基因破坏了小鼠正常生长,并减弱了先天和适应性免疫炎症渗透反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.40
自引率
6.70%
发文量
60
审稿时长
13.2 weeks
期刊介绍: The role of lipids, including essential fatty acids and their prostaglandin, leukotriene and other derivatives, is now evident in almost all areas of biomedical science. Cell membrane behaviour and cell signalling in all tissues are highly dependent on the lipid constituents of cells. Prostaglandins, Leukotrienes & Essential Fatty Acids aims to cover all aspects of the roles of lipids in cellular, organ and whole organism function, and places a particular emphasis on human studies. Papers concerning all medical specialties are published. Much of the material is particularly relevant to the development of novel treatments for disease.
期刊最新文献
Expression of concern: “Curcumin and linseed oil co-delivered in phospholipid nanoemulsions enhances the levels of docosahexaenoic acid in serum and tissue lipids of rats” Lower Omega-3 Status Associated with Higher Erythrocyte Distribution Width and Neutrophil-Lymphocyte Ratio in UK Biobank Cohort Effects of long-chain omega-3 polyunsaturated fatty acids on reducing anxiety and/or depression in adults; A systematic review and meta-analysis of randomised controlled trials Influence of the nutritional status and oxidative stress in the desaturation and elongation of n-3 and n-6 polyunsaturated fatty acids: Impact on non-alcoholic fatty liver disease. Differential Effects of Omega-3 Fatty Acids on HO-1, VCAM-1, and Cytotoxicity in Endothelial Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1