Angiogenic and angiostatic factors in the molecular control of angiogenesis.

J H W Distler, A Hirth, M Kurowska-Stolarska, R E Gay, S Gay, O Distler
{"title":"Angiogenic and angiostatic factors in the molecular control of angiogenesis.","authors":"J H W Distler,&nbsp;A Hirth,&nbsp;M Kurowska-Stolarska,&nbsp;R E Gay,&nbsp;S Gay,&nbsp;O Distler","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The vascular system that ensures an adequate blood flow is required to provide the cells with sufficient supply of nutrients and oxygen. Two different mechanisms of the formation of new vessels can be distinguished: vasculogenesis, the formation of the first primitive vascular plexus de novo and angiogenesis, the formation of new vessels from preexisting ones. Both processes are regulated by a delicate balance of pro- and anti-angiogenic factors. Physiologically, angiostatic mediators outweigh the angiogenic molecules and angiogenesis does not occur. Under certain conditions such as tumor formation or wound healing, the positive regulators of angiogenesis predominate and the endothelium becomes activated. Angiogenesis is initiated by vasodilatation and an increased permeability. After destabilization of the vessel wall, endothelial cells proliferate, migrate and form a tube, which is finally stabilized by pericytes and smooth muscle cells. Numerous soluble growth factors and inhibitors, cytokines and proteases as well as extracellular matrix proteins and adhesion molecules strictly control this multi-step process. The properties and interactions of angiogenic molecules such as VEGFs, FGFs, angiopoietins, PDGF, angiogenin, angiotropin, HGF, CXC chemokines with ELR motif, PECAM-1, integrins and VE-cadherin as well as angiostatic key players such as angiostatin, endostatin, thrombospondin, CXC chemokines without ELR motif, PEDF are discussed in this review with respect to their molecular impact on angiogenesis.</p>","PeriodicalId":79384,"journal":{"name":"The quarterly journal of nuclear medicine : official publication of the Italian Association of Nuclear Medicine (AIMN) [and] the International Association of Radiopharmacology (IAR)","volume":"47 3","pages":"149-61"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The quarterly journal of nuclear medicine : official publication of the Italian Association of Nuclear Medicine (AIMN) [and] the International Association of Radiopharmacology (IAR)","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The vascular system that ensures an adequate blood flow is required to provide the cells with sufficient supply of nutrients and oxygen. Two different mechanisms of the formation of new vessels can be distinguished: vasculogenesis, the formation of the first primitive vascular plexus de novo and angiogenesis, the formation of new vessels from preexisting ones. Both processes are regulated by a delicate balance of pro- and anti-angiogenic factors. Physiologically, angiostatic mediators outweigh the angiogenic molecules and angiogenesis does not occur. Under certain conditions such as tumor formation or wound healing, the positive regulators of angiogenesis predominate and the endothelium becomes activated. Angiogenesis is initiated by vasodilatation and an increased permeability. After destabilization of the vessel wall, endothelial cells proliferate, migrate and form a tube, which is finally stabilized by pericytes and smooth muscle cells. Numerous soluble growth factors and inhibitors, cytokines and proteases as well as extracellular matrix proteins and adhesion molecules strictly control this multi-step process. The properties and interactions of angiogenic molecules such as VEGFs, FGFs, angiopoietins, PDGF, angiogenin, angiotropin, HGF, CXC chemokines with ELR motif, PECAM-1, integrins and VE-cadherin as well as angiostatic key players such as angiostatin, endostatin, thrombospondin, CXC chemokines without ELR motif, PEDF are discussed in this review with respect to their molecular impact on angiogenesis.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
血管生成和血管抑制因子在血管生成中的分子调控作用。
保证充足血液流动的血管系统需要为细胞提供足够的营养和氧气供应。新血管的形成有两种不同的机制:血管生成,即第一个原始血管丛的新生形成和血管生成,即从原有血管形成新血管。这两个过程都是由促血管生成因子和抗血管生成因子的微妙平衡调节的。生理上,血管抑制介质大于血管生成分子,血管生成不会发生。在某些条件下,如肿瘤形成或伤口愈合,血管生成的正调节因子占主导地位,内皮细胞被激活。血管新生是由血管扩张和通透性增加引起的。血管壁失稳后,内皮细胞增殖、迁移形成管状,最终被周细胞和平滑肌细胞稳定。许多可溶性生长因子和抑制剂、细胞因子和蛋白酶以及细胞外基质蛋白和粘附分子严格控制着这一多步骤的过程。本文就血管生成分子如vegf、FGFs、血管生成素、PDGF、血管生成素、血管促生成素、HGF、带有ELR基序的CXC趋化因子、PECAM-1、整合素和VE-cadherin以及血管抑制素、内皮抑制素、血栓响应素、无ELR基序的CXC趋化因子、PEDF的分子作用及其对血管生成的影响进行了综述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Radiolabelling of peptides for diagnosis and therapy of non-oncological diseases. 99mTc-antimicrobial peptides: promising candidates for infection imaging. Radiolabeled chemotactic cytokines: new agents for scintigraphic imaging of infection and inflammation. The developing role of peptide radiopharmaceuticals in the study of chronic inflammation: new techniques for novel therapeutic options. The role of octreotide scintigraphy in rheumatoid arthritis and sarcoidosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1