{"title":"Mechanism of garlic (Allium sativum) induced reduction of hypertension in 2K-1C rats: a possible mediation of Na/H exchanger isoform-1.","authors":"K K Al-Qattan, I Khan, M A Alnaqeeb, M Ali","doi":"10.1016/s0952-3278(03)00087-5","DOIUrl":null,"url":null,"abstract":"<p><p>Garlic causes reduction in blood pressure (BP), however the role of Na/H exchanger (NHE) which mediates hypertension and related tissue-damage is poorly understood. In this study the effect of an established dose of raw garlic extract was investigated on the expression of NHE-1 and -3 and sodium pump activity in a 2K-1C model of hypertension in rats. 2K-1C animals showed high BP, increased serum concentration of PGE2 and TxB2, hypertrophy of the unclipped kidneys, but not in the clipped kidneys In addition, NHE-1 and NHE-3 isoforms were increased in both the 2K-1C kidneys, whereas alpha-actin was increased in the clipped but not in unclipped kidneys. Sodium pump activity was decreased in the clipped kidneys, but remained unchanged in the unclipped kidneys. Garlic treatment reduced the induction of NHE-1 only in the unclipped 2K-1C kidneys, whereas garlic treatment increased the sodium pump activity in both the 2K-1C kidneys. These findings demonstrate that the antihypertensive action of garlic is associated with a reversal of NHE-1 induction in the unclipped kidneys. Induction of NHE isoforms together with a reduced sodium pump activity might cause necrosis in the 2K-1C clipped kidneys due to cellular retention of Na+. On the other hand, activation of sodium pump by garlic extract in the kidneys should reduce intracellular Na+ concentration and normalize BP. These findings signify the use of garlic in the treatment of hypertension.</p>","PeriodicalId":20659,"journal":{"name":"Prostaglandins, leukotrienes, and essential fatty acids","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2003-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/s0952-3278(03)00087-5","citationCount":"55","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prostaglandins, leukotrienes, and essential fatty acids","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/s0952-3278(03)00087-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 55
Abstract
Garlic causes reduction in blood pressure (BP), however the role of Na/H exchanger (NHE) which mediates hypertension and related tissue-damage is poorly understood. In this study the effect of an established dose of raw garlic extract was investigated on the expression of NHE-1 and -3 and sodium pump activity in a 2K-1C model of hypertension in rats. 2K-1C animals showed high BP, increased serum concentration of PGE2 and TxB2, hypertrophy of the unclipped kidneys, but not in the clipped kidneys In addition, NHE-1 and NHE-3 isoforms were increased in both the 2K-1C kidneys, whereas alpha-actin was increased in the clipped but not in unclipped kidneys. Sodium pump activity was decreased in the clipped kidneys, but remained unchanged in the unclipped kidneys. Garlic treatment reduced the induction of NHE-1 only in the unclipped 2K-1C kidneys, whereas garlic treatment increased the sodium pump activity in both the 2K-1C kidneys. These findings demonstrate that the antihypertensive action of garlic is associated with a reversal of NHE-1 induction in the unclipped kidneys. Induction of NHE isoforms together with a reduced sodium pump activity might cause necrosis in the 2K-1C clipped kidneys due to cellular retention of Na+. On the other hand, activation of sodium pump by garlic extract in the kidneys should reduce intracellular Na+ concentration and normalize BP. These findings signify the use of garlic in the treatment of hypertension.
期刊介绍:
The role of lipids, including essential fatty acids and their prostaglandin, leukotriene and other derivatives, is now evident in almost all areas of biomedical science. Cell membrane behaviour and cell signalling in all tissues are highly dependent on the lipid constituents of cells. Prostaglandins, Leukotrienes & Essential Fatty Acids aims to cover all aspects of the roles of lipids in cellular, organ and whole organism function, and places a particular emphasis on human studies. Papers concerning all medical specialties are published. Much of the material is particularly relevant to the development of novel treatments for disease.