Modulation of the post-burn hypermetabolic state.

Jong O Lee, David N Herndon
{"title":"Modulation of the post-burn hypermetabolic state.","authors":"Jong O Lee, David N Herndon","doi":"10.1159/000072747","DOIUrl":null,"url":null,"abstract":"Burn patients have the highest metabolic rate of all critically ill or injured patients. The metabolic response to a severe burn injury is characterized by a hyperdynamic cardiovascular response, increased energy expenditure, accelerated glycogen and protein breakdown, lipolysis, loss of lean body mass and body weight, delayed wound healing, and immune depression [1, 2]. This response is mediated by increases in circulating levels of the catabolic hormones, catecholamines, cortisol, and glucagon [3]. Catecholamines increase up to 10 times normal. Catabolism after major burn injury begins on the 5th day after injury and continues up to 9 months later [4]. Increasing age, weight, and delay in definitive surgical treatment predict increased catabolism in children. In adults, the response increases up to age 50 where it plateaus [5]. The body surface area burned increases catabolism until a 40% body burn is reached. The magnitude of metabolic expenditure is 1.5 to twice normal in burns of greater than 40% total body surface area (TBSA). Catabolism is further increased by 50% with environmental cooling or the development of sepsis. Hypermetabolism and muscle protein catabolism continue long after completion of wound closure [4]. Protein breakdown continues 6 and 9 months after severe burn. There is almost complete lack of bone growth for 2 years after injury resulting in long-term osteopenia which may adversely affect peak bone mass accumulation [6, 7]. Severely burned children with a burn size of 80% have a linear growth delay for years after injury [8].","PeriodicalId":18989,"journal":{"name":"Nestle Nutrition workshop series. Clinical & performance programme","volume":"8 ","pages":"39-49; discussion 49-56"},"PeriodicalIF":0.0000,"publicationDate":"2003-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000072747","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nestle Nutrition workshop series. Clinical & performance programme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000072747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Burn patients have the highest metabolic rate of all critically ill or injured patients. The metabolic response to a severe burn injury is characterized by a hyperdynamic cardiovascular response, increased energy expenditure, accelerated glycogen and protein breakdown, lipolysis, loss of lean body mass and body weight, delayed wound healing, and immune depression [1, 2]. This response is mediated by increases in circulating levels of the catabolic hormones, catecholamines, cortisol, and glucagon [3]. Catecholamines increase up to 10 times normal. Catabolism after major burn injury begins on the 5th day after injury and continues up to 9 months later [4]. Increasing age, weight, and delay in definitive surgical treatment predict increased catabolism in children. In adults, the response increases up to age 50 where it plateaus [5]. The body surface area burned increases catabolism until a 40% body burn is reached. The magnitude of metabolic expenditure is 1.5 to twice normal in burns of greater than 40% total body surface area (TBSA). Catabolism is further increased by 50% with environmental cooling or the development of sepsis. Hypermetabolism and muscle protein catabolism continue long after completion of wound closure [4]. Protein breakdown continues 6 and 9 months after severe burn. There is almost complete lack of bone growth for 2 years after injury resulting in long-term osteopenia which may adversely affect peak bone mass accumulation [6, 7]. Severely burned children with a burn size of 80% have a linear growth delay for years after injury [8].
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
烧伤后高代谢状态的调节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The magnitude of the problem of malnutrition in Europe. Malnutrition in North America: where have we been? Where are we going? The economics of malnutrition. The need for consistent criteria for identifying malnutrition. Enteral nutrition reimbursement - the rationale for the policy: the US perspective.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1