{"title":"Solid-state wetting at the nanoscale","authors":"Olivier Pierre-Louis","doi":"10.1016/j.pcrysgrow.2016.04.009","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this lecture is to provide an overview on solid-state wetting, starting from basic concepts, and introducing the useful mathematical paraphernalia. We review and discuss the similarities and the differences between liquid-state and solid-state wetting. Then, we show how wetting concepts provide tools to understand the morphology and stability of solid-state thin films and nano-islands.</p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"62 2","pages":"Pages 177-202"},"PeriodicalIF":4.5000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2016.04.009","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Crystal Growth and Characterization of Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960897416300122","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 18
Abstract
The aim of this lecture is to provide an overview on solid-state wetting, starting from basic concepts, and introducing the useful mathematical paraphernalia. We review and discuss the similarities and the differences between liquid-state and solid-state wetting. Then, we show how wetting concepts provide tools to understand the morphology and stability of solid-state thin films and nano-islands.
期刊介绍:
Materials especially crystalline materials provide the foundation of our modern technologically driven world. The domination of materials is achieved through detailed scientific research.
Advances in the techniques of growing and assessing ever more perfect crystals of a wide range of materials lie at the roots of much of today''s advanced technology. The evolution and development of crystalline materials involves research by dedicated scientists in academia as well as industry involving a broad field of disciplines including biology, chemistry, physics, material sciences and engineering. Crucially important applications in information technology, photonics, energy storage and harvesting, environmental protection, medicine and food production require a deep understanding of and control of crystal growth. This can involve suitable growth methods and material characterization from the bulk down to the nano-scale.