{"title":"Observing crystal growth processes in computer simulations","authors":"Hiroki Nada , Hitoshi Miura , Jun Kawano , Toshiharu Irisawa","doi":"10.1016/j.pcrysgrow.2016.04.023","DOIUrl":null,"url":null,"abstract":"<div><p><span>This paper presents the outline of a practical course on computer simulation that will be given at the 16th International Summer School on Crystal Growth (ISSCG-16). The aim of this course is to understand crystal growth processes from the molecular level to the macroscopic level through computer simulations. We will mainly study molecular-scale crystal growth and nucleation processes by using molecular dynamics simulations and macroscopic growth processes at </span>crystal surfaces by using phase field simulations.</p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"62 2","pages":"Pages 404-407"},"PeriodicalIF":4.5000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2016.04.023","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Crystal Growth and Characterization of Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960897416300262","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 4
Abstract
This paper presents the outline of a practical course on computer simulation that will be given at the 16th International Summer School on Crystal Growth (ISSCG-16). The aim of this course is to understand crystal growth processes from the molecular level to the macroscopic level through computer simulations. We will mainly study molecular-scale crystal growth and nucleation processes by using molecular dynamics simulations and macroscopic growth processes at crystal surfaces by using phase field simulations.
期刊介绍:
Materials especially crystalline materials provide the foundation of our modern technologically driven world. The domination of materials is achieved through detailed scientific research.
Advances in the techniques of growing and assessing ever more perfect crystals of a wide range of materials lie at the roots of much of today''s advanced technology. The evolution and development of crystalline materials involves research by dedicated scientists in academia as well as industry involving a broad field of disciplines including biology, chemistry, physics, material sciences and engineering. Crucially important applications in information technology, photonics, energy storage and harvesting, environmental protection, medicine and food production require a deep understanding of and control of crystal growth. This can involve suitable growth methods and material characterization from the bulk down to the nano-scale.