A differential scanning calorimetry study of tetracycline repressor.

Sylwia Kedracka-Krok, Zygmunt Wasylewski
{"title":"A differential scanning calorimetry study of tetracycline repressor.","authors":"Sylwia Kedracka-Krok,&nbsp;Zygmunt Wasylewski","doi":"10.1046/j.1432-1033.2003.03856.x","DOIUrl":null,"url":null,"abstract":"<p><p>Tetracycline repressor (TetR), which constitutes the most common mechanism of bacterial resistance to an antibiotic, is a homodimeric protein composed of two identical subunits, each of which contains a domain possessing a helix-turn-helix motif and a domain responsible for binding tetracycline. Binding of tetracycline in the protein pocket is accompanied by conformational changes in TetR, which abolish the specific interaction between the protein and DNA. Differential scanning calorimetry (DSC) and CD measurements, performed at pH 8.0, were used to observe the thermal denaturation of TetR in the absence and presence of tetracycline. The DSC results show that, in the absence of tetracycline, the thermally induced transitions of TetR can be described as an irreversible process, strongly dependent on scan rate and indicating that the protein denaturation is under kinetic control described by the simple kinetic scheme: N(2)--->D(2), where k is a first-order kinetic constant, N is the native state, and D is the denatured state. On the other hand, analysis of the scan rate effect on the transitions of TetR in the presence of tetracycline shows that thermal unfolding of the protein can be described by the two-state model: N(2)<--->U(2)--->D. In the proposed model, TetR in the presence of tetracycline undergoes co-operative unfolding, characterized by an enthalpy change (DeltaH(cal) = 1067 kJ x mol(-1)) and an entropy change (DeltaS = 3.1 kJ x mol(-1)).</p>","PeriodicalId":11817,"journal":{"name":"European journal of biochemistry","volume":"270 22","pages":"4564-73"},"PeriodicalIF":0.0000,"publicationDate":"2003-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1046/j.1432-1033.2003.03856.x","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1046/j.1432-1033.2003.03856.x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Tetracycline repressor (TetR), which constitutes the most common mechanism of bacterial resistance to an antibiotic, is a homodimeric protein composed of two identical subunits, each of which contains a domain possessing a helix-turn-helix motif and a domain responsible for binding tetracycline. Binding of tetracycline in the protein pocket is accompanied by conformational changes in TetR, which abolish the specific interaction between the protein and DNA. Differential scanning calorimetry (DSC) and CD measurements, performed at pH 8.0, were used to observe the thermal denaturation of TetR in the absence and presence of tetracycline. The DSC results show that, in the absence of tetracycline, the thermally induced transitions of TetR can be described as an irreversible process, strongly dependent on scan rate and indicating that the protein denaturation is under kinetic control described by the simple kinetic scheme: N(2)--->D(2), where k is a first-order kinetic constant, N is the native state, and D is the denatured state. On the other hand, analysis of the scan rate effect on the transitions of TetR in the presence of tetracycline shows that thermal unfolding of the protein can be described by the two-state model: N(2)<--->U(2)--->D. In the proposed model, TetR in the presence of tetracycline undergoes co-operative unfolding, characterized by an enthalpy change (DeltaH(cal) = 1067 kJ x mol(-1)) and an entropy change (DeltaS = 3.1 kJ x mol(-1)).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
四环素抑制剂的差示扫描量热法研究。
四环素抑制因子(TetR)是细菌对抗生素产生耐药性的最常见机制,它是一种同二聚体蛋白,由两个相同的亚基组成,每个亚基都包含一个具有螺旋-螺旋-螺旋基序的结构域和一个负责结合四环素的结构域。四环素在蛋白质口袋中的结合伴随着TetR的构象变化,从而取消了蛋白质与DNA之间的特异性相互作用。采用差示扫描量热法(DSC)和CD法,在pH 8.0下观察四环素存在和不存在时TetR的热变性。DSC结果表明,在没有四环素的情况下,TetR的热诱导转变可以描述为一个不可逆的过程,强烈依赖于扫描速率,表明蛋白质变性受动力学控制,动力学模式为N(2)- >D(2),其中k为一级动力学常数,N为天然态,D为变性态。另一方面,分析扫描速率对四环素存在下TetR跃迁的影响表明,蛋白质的热展开可以用两态模型来描述:N(2)U(2)—>D。在提出的模型中,四环素存在时,TetR进行协同展开,其特征是焓变化(δ tah (cal) = 1067 kJ x mol(-1))和熵变化(δ tas = 3.1 kJ x mol(-1))。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The citation of bibliographic references in biochemical journals. Recommendations 1971. Carbamoylphosphate synthetase from Pseudomonas aeruginosa. Subunit composition, kinetic analysis and regulation. Nuclear magnetic resonance of protamines. A 13C relaxation study of the three main fractions of clupeine. Stereochemistry of the hydrolysis of trehalose by the enzyme trehalase prepared from the flesh fly Sarcophaga barbata. Studies on energy supply for genetic processes. Requirement for membrane potential in Escherichia coli infection by phage T4.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1