From membrane phospholipid defects to altered neurotransmission: is arachidonic acid a nexus in the pathophysiology of schizophrenia?

IF 2.9 4区 医学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Prostaglandins, leukotrienes, and essential fatty acids Pub Date : 2003-12-01 DOI:10.1016/j.plefa.2003.08.008
P D Skosnik, J K Yao
{"title":"From membrane phospholipid defects to altered neurotransmission: is arachidonic acid a nexus in the pathophysiology of schizophrenia?","authors":"P D Skosnik,&nbsp;J K Yao","doi":"10.1016/j.plefa.2003.08.008","DOIUrl":null,"url":null,"abstract":"<p><p>Schizophrenia (SZ) is a devastating neuropsychiatric disorder affecting 1% of the general population, and is characterized by symptoms such as delusions, hallucinations, and blunted affect. While many ideas regarding SZ pathogenesis have been put forth, the majority of research has focused on neurotransmitter function, particularly in relation to altered dopamine activity. However, treatments based on this paradigm have met with only modest success, and current medications fail to alleviate symptoms in 30-60% of patients. An alternative idea postulated a quarter of a century ago by Feldberg (Psychol. Med. 6 (1976) 359) and Horrobin (Lancet 1 (1977) 936) involves the theory that SZ is associated in part with phospholipid/fatty acid abnormalities. Since then, it has been repeatedly shown that in both central and peripheral tissue, SZ patients demonstrate increased phospholipid breakdown and decreased levels of various polyunsaturated fatty acids (PUFAs), particularly arachidonic acid (AA). Given the diverse physiological function of membrane phospholipids and PUFAs, an elucidation of their role in SZ pathophysiology may provide novel strategies in the treatment of this disorder. The purpose of this review is to summarize the relevant data on membrane phospholipid/PUFA defects in SZ, the physiological consequence of altered AA signaling, and how they relate to the neurobiological manifestations of SZ and therapeutic outcome.</p>","PeriodicalId":20659,"journal":{"name":"Prostaglandins, leukotrienes, and essential fatty acids","volume":"69 6","pages":"367-84"},"PeriodicalIF":2.9000,"publicationDate":"2003-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.plefa.2003.08.008","citationCount":"79","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prostaglandins, leukotrienes, and essential fatty acids","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.plefa.2003.08.008","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 79

Abstract

Schizophrenia (SZ) is a devastating neuropsychiatric disorder affecting 1% of the general population, and is characterized by symptoms such as delusions, hallucinations, and blunted affect. While many ideas regarding SZ pathogenesis have been put forth, the majority of research has focused on neurotransmitter function, particularly in relation to altered dopamine activity. However, treatments based on this paradigm have met with only modest success, and current medications fail to alleviate symptoms in 30-60% of patients. An alternative idea postulated a quarter of a century ago by Feldberg (Psychol. Med. 6 (1976) 359) and Horrobin (Lancet 1 (1977) 936) involves the theory that SZ is associated in part with phospholipid/fatty acid abnormalities. Since then, it has been repeatedly shown that in both central and peripheral tissue, SZ patients demonstrate increased phospholipid breakdown and decreased levels of various polyunsaturated fatty acids (PUFAs), particularly arachidonic acid (AA). Given the diverse physiological function of membrane phospholipids and PUFAs, an elucidation of their role in SZ pathophysiology may provide novel strategies in the treatment of this disorder. The purpose of this review is to summarize the relevant data on membrane phospholipid/PUFA defects in SZ, the physiological consequence of altered AA signaling, and how they relate to the neurobiological manifestations of SZ and therapeutic outcome.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从膜磷脂缺陷到神经传递改变:花生四烯酸在精神分裂症的病理生理中起作用吗?
精神分裂症(SZ)是一种破坏性的神经精神疾病,影响总人口的1%,其特征是妄想、幻觉和情感迟钝。虽然关于SZ的发病机制已经提出了许多观点,但大多数研究都集中在神经递质功能上,特别是与多巴胺活性改变有关。然而,基于这种模式的治疗只取得了有限的成功,目前的药物不能缓解30-60%患者的症状。费尔德伯格(心理学家)在25年前提出了另一种观点。Med. 6(1976) 359)和Horrobin (Lancet 1(1977) 936)提出SZ部分与磷脂/脂肪酸异常有关的理论。此后,多次研究表明,在中枢和外周组织中,SZ患者表现出磷脂分解增加,各种多不饱和脂肪酸(PUFAs)水平下降,特别是花生四烯酸(AA)。鉴于膜磷脂和PUFAs的多种生理功能,阐明它们在SZ病理生理中的作用可能为治疗这种疾病提供新的策略。本文旨在综述SZ膜磷脂/PUFA缺陷的相关资料,AA信号改变的生理后果,以及它们与SZ神经生物学表现和治疗结果的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.40
自引率
6.70%
发文量
60
审稿时长
13.2 weeks
期刊介绍: The role of lipids, including essential fatty acids and their prostaglandin, leukotriene and other derivatives, is now evident in almost all areas of biomedical science. Cell membrane behaviour and cell signalling in all tissues are highly dependent on the lipid constituents of cells. Prostaglandins, Leukotrienes & Essential Fatty Acids aims to cover all aspects of the roles of lipids in cellular, organ and whole organism function, and places a particular emphasis on human studies. Papers concerning all medical specialties are published. Much of the material is particularly relevant to the development of novel treatments for disease.
期刊最新文献
Expression of concern: “Curcumin and linseed oil co-delivered in phospholipid nanoemulsions enhances the levels of docosahexaenoic acid in serum and tissue lipids of rats” Lower Omega-3 Status Associated with Higher Erythrocyte Distribution Width and Neutrophil-Lymphocyte Ratio in UK Biobank Cohort Effects of long-chain omega-3 polyunsaturated fatty acids on reducing anxiety and/or depression in adults; A systematic review and meta-analysis of randomised controlled trials Influence of the nutritional status and oxidative stress in the desaturation and elongation of n-3 and n-6 polyunsaturated fatty acids: Impact on non-alcoholic fatty liver disease. Differential Effects of Omega-3 Fatty Acids on HO-1, VCAM-1, and Cytotoxicity in Endothelial Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1