Structural diversity in the small heat shock protein superfamily: control of aggregation by the N-terminal region.

John C Salerno, Cheryl L Eifert, Kathleen M Salerno, Jane F Koretz
{"title":"Structural diversity in the small heat shock protein superfamily: control of aggregation by the N-terminal region.","authors":"John C Salerno,&nbsp;Cheryl L Eifert,&nbsp;Kathleen M Salerno,&nbsp;Jane F Koretz","doi":"10.1093/protein/gzg102","DOIUrl":null,"url":null,"abstract":"<p><p>The small heat shock protein superfamily, extending over all kingdoms, is characterized by a common core domain with variable N- and C-terminal extensions. The relatively hydrophobic N-terminus plays a critical role in promoting and controlling high-order aggregation, accounting for the high degree of structural variability within the superfamily. The effects of N-terminal volume on aggregation were studied using chimeric and truncated proteins. Proteins lacking the N-terminal region did not aggregate above the tetramers, whereas larger N-termini resulted in large aggregates, consistent with the N-termini packing inside the aggregates. Variation in an extended internal loop differentiates typical prokaryotic and plant superfamily members from their animal counterparts; this implies different geometry in the dimeric building block of high-order aggregates.</p>","PeriodicalId":20902,"journal":{"name":"Protein engineering","volume":"16 11","pages":"847-51"},"PeriodicalIF":0.0000,"publicationDate":"2003-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/protein/gzg102","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/protein/gzg102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

The small heat shock protein superfamily, extending over all kingdoms, is characterized by a common core domain with variable N- and C-terminal extensions. The relatively hydrophobic N-terminus plays a critical role in promoting and controlling high-order aggregation, accounting for the high degree of structural variability within the superfamily. The effects of N-terminal volume on aggregation were studied using chimeric and truncated proteins. Proteins lacking the N-terminal region did not aggregate above the tetramers, whereas larger N-termini resulted in large aggregates, consistent with the N-termini packing inside the aggregates. Variation in an extended internal loop differentiates typical prokaryotic and plant superfamily members from their animal counterparts; this implies different geometry in the dimeric building block of high-order aggregates.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
小热休克蛋白超家族的结构多样性:n端区域对聚集的控制。
小的热休克蛋白超家族,扩展到所有王国,其特征是具有可变N端和c端扩展的共同核心结构域。相对疏水的n端在促进和控制高阶聚集中起着关键作用,这说明了超家族中高度的结构变异性。用嵌合蛋白和截短蛋白研究了n端体积对聚集的影响。缺乏n端区域的蛋白质不会聚集在四聚体上方,而较大的n端导致大聚集体,这与聚集体内部的n端包装一致。扩展内环的变异将典型的原核生物和植物超家族成员与动物同类区分开来;这意味着在高阶聚集体的二聚体构建块中存在不同的几何形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of Novel Cellular Imaging Tools Using Protein Engineering High‐Throughput Mass Spectrometry Complements Protein Engineering Programming Novel Cancer Therapeutics: Design Principles for Chimeric Antigen Receptors Recent Advances in Cell Surface Display Technologies for Directed Protein Evolution Protein Engineering by Efficient Sequence Space Exploration Through Combination of Directed Evolution and Computational Design Methodologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1