MANIFOLD: protein fold recognition based on secondary structure, sequence similarity and enzyme classification.

Eckart Bindewald, Alessandro Cestaro, Jürgen Hesser, Matthias Heiler, Silvio C E Tosatto
{"title":"MANIFOLD: protein fold recognition based on secondary structure, sequence similarity and enzyme classification.","authors":"Eckart Bindewald,&nbsp;Alessandro Cestaro,&nbsp;Jürgen Hesser,&nbsp;Matthias Heiler,&nbsp;Silvio C E Tosatto","doi":"10.1093/protein/gzg106","DOIUrl":null,"url":null,"abstract":"<p><p>We present a protein fold recognition method, MANIFOLD, which uses the similarity between target and template proteins in predicted secondary structure, sequence and enzyme code to predict the fold of the target protein. We developed a non-linear ranking scheme in order to combine the scores of the three different similarity measures used. For a difficult test set of proteins with very little sequence similarity, the program predicts the fold class correctly in 34% of cases. This is an over twofold increase in accuracy compared with sequence-based methods such as PSI-BLAST or GenTHREADER, which score 13-14% correct first hits for the same test set. The functional similarity term increases the prediction accuracy by up to 3% compared with using the combination of secondary structure similarity and PSI-BLAST alone. We argue that using functional and secondary structure information can increase the fold recognition beyond sequence similarity.</p>","PeriodicalId":20902,"journal":{"name":"Protein engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2003-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/protein/gzg106","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/protein/gzg106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

We present a protein fold recognition method, MANIFOLD, which uses the similarity between target and template proteins in predicted secondary structure, sequence and enzyme code to predict the fold of the target protein. We developed a non-linear ranking scheme in order to combine the scores of the three different similarity measures used. For a difficult test set of proteins with very little sequence similarity, the program predicts the fold class correctly in 34% of cases. This is an over twofold increase in accuracy compared with sequence-based methods such as PSI-BLAST or GenTHREADER, which score 13-14% correct first hits for the same test set. The functional similarity term increases the prediction accuracy by up to 3% compared with using the combination of secondary structure similarity and PSI-BLAST alone. We argue that using functional and secondary structure information can increase the fold recognition beyond sequence similarity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
歧管:基于二级结构、序列相似性和酶分类的蛋白质折叠识别。
本文提出了一种蛋白质折叠识别方法MANIFOLD,该方法利用目标蛋白与模板蛋白在预测的二级结构、序列和酶编码上的相似性来预测目标蛋白的折叠。我们开发了一个非线性排名方案,以便将所使用的三种不同相似性度量的分数结合起来。对于一组序列相似度非常低的蛋白质,该程序在34%的情况下正确预测了折叠类别。与基于序列的方法(如PSI-BLAST或GenTHREADER)相比,准确度提高了两倍以上,后者在相同的测试集上的首次命中正确率为13-14%。与单独使用二级结构相似度和PSI-BLAST相结合相比,功能相似项的预测精度提高了3%。我们认为利用功能和二级结构信息可以提高序列相似性以外的折叠识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of Novel Cellular Imaging Tools Using Protein Engineering High‐Throughput Mass Spectrometry Complements Protein Engineering Programming Novel Cancer Therapeutics: Design Principles for Chimeric Antigen Receptors Recent Advances in Cell Surface Display Technologies for Directed Protein Evolution Protein Engineering by Efficient Sequence Space Exploration Through Combination of Directed Evolution and Computational Design Methodologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1