Dorota Mackiewicz, Paweł Mackiewicz, Maria Kowalczuk, Małgorzata Dudkiewicz, Mirosław R Dudek, Stanisław Cebrat
{"title":"Rearrangements between differently replicating DNA strands in asymmetric bacterial genomes.","authors":"Dorota Mackiewicz, Paweł Mackiewicz, Maria Kowalczuk, Małgorzata Dudkiewicz, Mirosław R Dudek, Stanisław Cebrat","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Many bacterial genomes are under asymmetric mutational pressure which introduces compositional asymmetry into DNA molecule resulting in many biases in coding structure of chromosomes. One of the processes affected by the asymmetry is translocation changing the position of the coding sequence on chromosome in respect to the orientation on the leading and lagging DNA strand. When analysing sets of paralogs in 50 genomes, we found that the number of observed genes which switched their positions on DNA strand is lowest for genomes with the highest DNA asymmetry. However, the number of orthologs which changed DNA strand increases with the phylogenetic distance between the compared genomes. Nevertheless, there is a fraction of coding sequences that stay on the leading strand in all analysed genomes, whereas there are no sequences that stay always on the lagging strand. Since sequences diverge very fast after switching the DNA strand, this bias in mobility of sequences is responsible, in part, for higher divergence rates among some of coding sequences located on the lagging DNA strand.</p>","PeriodicalId":75388,"journal":{"name":"Acta microbiologica Polonica","volume":"52 3","pages":"245-60"},"PeriodicalIF":0.0000,"publicationDate":"2003-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta microbiologica Polonica","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Many bacterial genomes are under asymmetric mutational pressure which introduces compositional asymmetry into DNA molecule resulting in many biases in coding structure of chromosomes. One of the processes affected by the asymmetry is translocation changing the position of the coding sequence on chromosome in respect to the orientation on the leading and lagging DNA strand. When analysing sets of paralogs in 50 genomes, we found that the number of observed genes which switched their positions on DNA strand is lowest for genomes with the highest DNA asymmetry. However, the number of orthologs which changed DNA strand increases with the phylogenetic distance between the compared genomes. Nevertheless, there is a fraction of coding sequences that stay on the leading strand in all analysed genomes, whereas there are no sequences that stay always on the lagging strand. Since sequences diverge very fast after switching the DNA strand, this bias in mobility of sequences is responsible, in part, for higher divergence rates among some of coding sequences located on the lagging DNA strand.