{"title":"A review on spectroscopic methods for determination of nitrite and nitrate in environmental samples","authors":"Priyanka Singh , Manish Kumar Singh , Younus Raza Beg , Gokul Ram Nishad","doi":"10.1016/j.talanta.2018.08.028","DOIUrl":null,"url":null,"abstract":"<div><p><span>Nitrate is an important pollutant found in environmental samples. Nitrate and nitrite pose various environmental as well as health hazards. Different methods of determining nitrate in various environmental samples developed during previous years include spectrophotometric, chemiluminescence, electrochemical detection<span><span>, chromatographic, capillary electrophoretic, spectrofluorimetric methods. Out of these, methods based on spectroscopic detection of nitrate have been discussed in this review article due to their easy availability, high sensitivity, low detection limit, economical and facile nature. Methods based on spectrophotometry, Raman Spectroscopy, IR and FTIR Spectroscopy, </span>atomic absorption spectroscopy<span> (AAS), fluorescence spectroscopy, chemiluminescence, mass spectroscopy, molecular emission cavity analysis (MECA), electron paramagnetic resonance spectrometry (EPR) and </span></span></span>nuclear magnetic resonance spectroscopy (NMR) have been reviewed. The basic principle, detection limits, detection range, RSD%, sample throughput/h, advantages and disadvantages have been discussed.</p></div>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"191 ","pages":"Pages 364-381"},"PeriodicalIF":5.6000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.talanta.2018.08.028","citationCount":"146","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039914018308397","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 146
Abstract
Nitrate is an important pollutant found in environmental samples. Nitrate and nitrite pose various environmental as well as health hazards. Different methods of determining nitrate in various environmental samples developed during previous years include spectrophotometric, chemiluminescence, electrochemical detection, chromatographic, capillary electrophoretic, spectrofluorimetric methods. Out of these, methods based on spectroscopic detection of nitrate have been discussed in this review article due to their easy availability, high sensitivity, low detection limit, economical and facile nature. Methods based on spectrophotometry, Raman Spectroscopy, IR and FTIR Spectroscopy, atomic absorption spectroscopy (AAS), fluorescence spectroscopy, chemiluminescence, mass spectroscopy, molecular emission cavity analysis (MECA), electron paramagnetic resonance spectrometry (EPR) and nuclear magnetic resonance spectroscopy (NMR) have been reviewed. The basic principle, detection limits, detection range, RSD%, sample throughput/h, advantages and disadvantages have been discussed.
期刊介绍:
Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome.
Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.