Loops In Proteins (LIP)--a comprehensive loop database for homology modelling.

E Michalsky, A Goede, R Preissner
{"title":"Loops In Proteins (LIP)--a comprehensive loop database for homology modelling.","authors":"E Michalsky,&nbsp;A Goede,&nbsp;R Preissner","doi":"10.1093/protein/gzg119","DOIUrl":null,"url":null,"abstract":"<p><p>One of the most important and challenging tasks in protein modelling is the prediction of loops, as can be seen in the large variety of existing approaches. Loops In Proteins (LIP) is a database that includes all protein segments of a length up to 15 residues contained in the Protein Data Bank (PDB). In this study, the applicability of LIP to loop prediction in the framework of homology modelling is investigated. Searching the database for loop candidates takes less than 1 s on a desktop PC, and ranking them takes a few minutes. This is an order of magnitude faster than most existing procedures. The measure of accuracy is the root mean square deviation (RMSD) with respect to the main-chain atoms after local superposition of target loop and predicted loop. Loops of up to nine residues length were modelled with a local RMSD <1 A and those of length up to 14 residues with an accuracy better than 2 A. The results were compared in detail with a thoroughly evaluated and tested ab initio method published recently and additionally with two further methods for a small loop test set. The LIP method produced very good predictions. In particular for longer loops it outperformed other methods.</p>","PeriodicalId":20902,"journal":{"name":"Protein engineering","volume":"16 12","pages":"979-85"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/protein/gzg119","citationCount":"111","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/protein/gzg119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 111

Abstract

One of the most important and challenging tasks in protein modelling is the prediction of loops, as can be seen in the large variety of existing approaches. Loops In Proteins (LIP) is a database that includes all protein segments of a length up to 15 residues contained in the Protein Data Bank (PDB). In this study, the applicability of LIP to loop prediction in the framework of homology modelling is investigated. Searching the database for loop candidates takes less than 1 s on a desktop PC, and ranking them takes a few minutes. This is an order of magnitude faster than most existing procedures. The measure of accuracy is the root mean square deviation (RMSD) with respect to the main-chain atoms after local superposition of target loop and predicted loop. Loops of up to nine residues length were modelled with a local RMSD <1 A and those of length up to 14 residues with an accuracy better than 2 A. The results were compared in detail with a thoroughly evaluated and tested ab initio method published recently and additionally with two further methods for a small loop test set. The LIP method produced very good predictions. In particular for longer loops it outperformed other methods.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蛋白质环(LIP)-一个用于同源建模的综合环数据库。
蛋白质建模中最重要和最具挑战性的任务之一是环路的预测,这可以从各种现有方法中看出。蛋白质环(LIP)是一个包含蛋白质数据库(PDB)中长度不超过15个残基的所有蛋白质片段的数据库。在本研究中,探讨了LIP在同源建模框架下环路预测的适用性。在桌面PC上搜索数据库中的候选循环只需要不到15秒,而对候选循环进行排序则需要几分钟。这比大多数现有的程序快了一个数量级。准确度的量度是目标环与预测环局部叠加后主链原子的均方根偏差(RMSD)。最多9个残基长度的环用局部RMSD建模
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of Novel Cellular Imaging Tools Using Protein Engineering High‐Throughput Mass Spectrometry Complements Protein Engineering Programming Novel Cancer Therapeutics: Design Principles for Chimeric Antigen Receptors Recent Advances in Cell Surface Display Technologies for Directed Protein Evolution Protein Engineering by Efficient Sequence Space Exploration Through Combination of Directed Evolution and Computational Design Methodologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1