Optimized electrostatic surfaces parallel increased thermostability: a structural bioinformatic analysis.

Eric Alsop, Melanie Silver, Dennis R Livesay
{"title":"Optimized electrostatic surfaces parallel increased thermostability: a structural bioinformatic analysis.","authors":"Eric Alsop,&nbsp;Melanie Silver,&nbsp;Dennis R Livesay","doi":"10.1093/protein/gzg131","DOIUrl":null,"url":null,"abstract":"<p><p>It has been known for some time that thermophilic proteins generally have increased numbers of non-covalent interactions (salt bridges, hydrogen bonds, etc.) compared with their mesophilic orthologs. Recently, anecdotal structural comparisons suggest that non-specific acid-base ion pairs on the protein surface can be an evolutionary efficient mechanism to increase thermostability. In this comprehensive structural analysis, we confirm this to be the case. Comparison of 127 orthologous mesophilic- thermophilic protein groups indicates a clear preference for stabilizing acid-base pairs on the surface of thermophilic proteins. Compared with positions in the core, stabilizing surface mutations are less likely to disrupt the tertiary structure, and thus more likely to be evolutionarily selected. Therefore, we believe that our results, in addition to being theoretically interesting, will facilitate identification of charge-altering mutations likely to increase the stability of a particular protein structure.</p>","PeriodicalId":20902,"journal":{"name":"Protein engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2003-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/protein/gzg131","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/protein/gzg131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

Abstract

It has been known for some time that thermophilic proteins generally have increased numbers of non-covalent interactions (salt bridges, hydrogen bonds, etc.) compared with their mesophilic orthologs. Recently, anecdotal structural comparisons suggest that non-specific acid-base ion pairs on the protein surface can be an evolutionary efficient mechanism to increase thermostability. In this comprehensive structural analysis, we confirm this to be the case. Comparison of 127 orthologous mesophilic- thermophilic protein groups indicates a clear preference for stabilizing acid-base pairs on the surface of thermophilic proteins. Compared with positions in the core, stabilizing surface mutations are less likely to disrupt the tertiary structure, and thus more likely to be evolutionarily selected. Therefore, we believe that our results, in addition to being theoretically interesting, will facilitate identification of charge-altering mutations likely to increase the stability of a particular protein structure.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化静电表面平行增加热稳定性:结构生物信息学分析。
一段时间以来,人们已经知道,与它们的亲温同源物相比,嗜热蛋白通常具有更多的非共价相互作用(盐桥、氢键等)。最近,一些零星的结构比较表明,蛋白质表面的非特异性酸碱离子对可能是一种提高热稳定性的进化有效机制。在这次全面的结构分析中,我们证实了这一点。对127个同源嗜中温-嗜热蛋白基团的比较表明,在嗜热蛋白表面稳定酸碱对有明显的偏好。与核心位置相比,稳定的表面突变不太可能破坏三级结构,因此更有可能被进化选择。因此,我们相信我们的结果,除了理论上有趣之外,将有助于识别可能增加特定蛋白质结构稳定性的电荷改变突变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of Novel Cellular Imaging Tools Using Protein Engineering High‐Throughput Mass Spectrometry Complements Protein Engineering Programming Novel Cancer Therapeutics: Design Principles for Chimeric Antigen Receptors Recent Advances in Cell Surface Display Technologies for Directed Protein Evolution Protein Engineering by Efficient Sequence Space Exploration Through Combination of Directed Evolution and Computational Design Methodologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1