A genome-wide survey of human tyrosine phosphatases.

Anirban Bhaduri, R Sowdhamini
{"title":"A genome-wide survey of human tyrosine phosphatases.","authors":"Anirban Bhaduri,&nbsp;R Sowdhamini","doi":"10.1093/protein/gzg144","DOIUrl":null,"url":null,"abstract":"<p><p>Tyrosine phosphatases play an important role in cellular signalling and networking that is antagonistic to the kinases. Near completion of the human genome- sequencing project permits us to review the distribution of this family and study its involvement in different pathways. Ninety-six homologues of the classical and dual- specific tyrosine phosphatases (DuSPs) were identified in the human genome using sensitive sequence search techniques. Uncommon domain architectures were encountered, including an example where a kinase and a phosphatase domain are found to co-exist in a single polypeptide. The evolutionary rate is higher for the DuSP compared with the classical tyrosine phosphatases. Orthologues of the 96 putative human tyrosine phosphatases were identified in four model organisms to study the conservation of the family members. Three nuclear localized tyrosine phosphatases retain an orthologous relationship with all model systems considered but still differ in their domain architectures. The diversity in the multi-domain members of the superfamily occurs mainly through domain recruitment, especially in receptor tyrosine phosphatases. The curation of human tyrosine phosphatases provides a convenient framework for characterizing and analysing the functional and structural properties of this diverse family of proteins.</p>","PeriodicalId":20902,"journal":{"name":"Protein engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2003-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/protein/gzg144","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/protein/gzg144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

Tyrosine phosphatases play an important role in cellular signalling and networking that is antagonistic to the kinases. Near completion of the human genome- sequencing project permits us to review the distribution of this family and study its involvement in different pathways. Ninety-six homologues of the classical and dual- specific tyrosine phosphatases (DuSPs) were identified in the human genome using sensitive sequence search techniques. Uncommon domain architectures were encountered, including an example where a kinase and a phosphatase domain are found to co-exist in a single polypeptide. The evolutionary rate is higher for the DuSP compared with the classical tyrosine phosphatases. Orthologues of the 96 putative human tyrosine phosphatases were identified in four model organisms to study the conservation of the family members. Three nuclear localized tyrosine phosphatases retain an orthologous relationship with all model systems considered but still differ in their domain architectures. The diversity in the multi-domain members of the superfamily occurs mainly through domain recruitment, especially in receptor tyrosine phosphatases. The curation of human tyrosine phosphatases provides a convenient framework for characterizing and analysing the functional and structural properties of this diverse family of proteins.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人类酪氨酸磷酸酶的全基因组调查。
酪氨酸磷酸酶在细胞信号传导和网络中起重要作用,这是对激酶的拮抗。接近完成的人类基因组测序计划使我们能够回顾这个家族的分布,并研究它在不同途径中的参与。利用敏感序列搜索技术在人类基因组中鉴定了96个经典和双特异性酪氨酸磷酸酶(DuSPs)的同源物。遇到了不常见的结构域结构,包括在单个多肽中发现激酶和磷酸酶结构域共存的例子。与传统的酪氨酸磷酸酶相比,DuSP的进化速率更高。在4种模式生物中鉴定了96种推测的人类酪氨酸磷酸酶的同源物,以研究家族成员的保守性。三种核定域酪氨酸磷酸酶与所有考虑的模型系统保持同源关系,但它们的结构域结构仍然不同。超家族的多结构域成员的多样性主要通过结构域募集发生,尤其是在受体酪氨酸磷酸酶中。人类酪氨酸磷酸酶的培养为描述和分析这一不同蛋白质家族的功能和结构特性提供了一个方便的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of Novel Cellular Imaging Tools Using Protein Engineering High‐Throughput Mass Spectrometry Complements Protein Engineering Programming Novel Cancer Therapeutics: Design Principles for Chimeric Antigen Receptors Recent Advances in Cell Surface Display Technologies for Directed Protein Evolution Protein Engineering by Efficient Sequence Space Exploration Through Combination of Directed Evolution and Computational Design Methodologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1