Both N-methyl-d-aspartate (NMDA) and non-NMDA receptors mediate glutamate-induced cleavage of the cyclin-dependent kinase 5 (cdk5) activator p35 in cultured rat hippocampal neurons
Petri Kerokoski , Tiina Suuronen , Antero Salminen , Hilkka Soininen , Tuula Pirttilä
{"title":"Both N-methyl-d-aspartate (NMDA) and non-NMDA receptors mediate glutamate-induced cleavage of the cyclin-dependent kinase 5 (cdk5) activator p35 in cultured rat hippocampal neurons","authors":"Petri Kerokoski , Tiina Suuronen , Antero Salminen , Hilkka Soininen , Tuula Pirttilä","doi":"10.1016/j.neulet.2004.07.007","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>Cyclin-dependent kinase 5 (cdk5) regulates crucial neurobiological events, and deregulation of cdk5 has been implicated in several neurodegenerative disorders. The deregulation is suggested to occur due to cleavage of the cdk5 activator protein p35 to a smaller p25 fragment by the calcium-activated protease calpain. Here we have elucidated the role of different calcium-permeable ionotropic </span>glutamate receptors in the induction of p35 cleavage in cultured rat hippocampal neurons. The glutamate receptor agonists </span>glutamic acid, </span><em>N</em>-methyl-<span>d</span><span><span>-aspartate (NMDA), kainic acid, and α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) were all able to induce p35 cleavage, in a manner depending on extracellular calcium. The effect of glutamate was mediated by NMDA receptors, as it was prevented by the NMDA antagonist MK-801. Cyclothiazide (CTZ), an inhibitor of AMPA </span>receptor desensitization, enhanced glutamate-induced p35 cleavage. In immature 6-day-old cultures the non-NMDA agonist kainic acid provoked p35 cleavage, whereas glutamate and NMDA were ineffective. The data suggest that both NMDA and non-NMDA receptors are able to induce p35 cleavage. Different factors, such as maturation state of neurons or desensitization properties of non-NMDA receptors, may determine which receptor predominantly mediates the effect of glutamate on p35 cleavage.</span></p></div>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":"368 2","pages":"Pages 181-185"},"PeriodicalIF":2.0000,"publicationDate":"2004-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.neulet.2004.07.007","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304394004008626","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 43
Abstract
Cyclin-dependent kinase 5 (cdk5) regulates crucial neurobiological events, and deregulation of cdk5 has been implicated in several neurodegenerative disorders. The deregulation is suggested to occur due to cleavage of the cdk5 activator protein p35 to a smaller p25 fragment by the calcium-activated protease calpain. Here we have elucidated the role of different calcium-permeable ionotropic glutamate receptors in the induction of p35 cleavage in cultured rat hippocampal neurons. The glutamate receptor agonists glutamic acid, N-methyl-d-aspartate (NMDA), kainic acid, and α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) were all able to induce p35 cleavage, in a manner depending on extracellular calcium. The effect of glutamate was mediated by NMDA receptors, as it was prevented by the NMDA antagonist MK-801. Cyclothiazide (CTZ), an inhibitor of AMPA receptor desensitization, enhanced glutamate-induced p35 cleavage. In immature 6-day-old cultures the non-NMDA agonist kainic acid provoked p35 cleavage, whereas glutamate and NMDA were ineffective. The data suggest that both NMDA and non-NMDA receptors are able to induce p35 cleavage. Different factors, such as maturation state of neurons or desensitization properties of non-NMDA receptors, may determine which receptor predominantly mediates the effect of glutamate on p35 cleavage.
期刊介绍:
Neuroscience Letters is devoted to the rapid publication of short, high-quality papers of interest to the broad community of neuroscientists. Only papers which will make a significant addition to the literature in the field will be published. Papers in all areas of neuroscience - molecular, cellular, developmental, systems, behavioral and cognitive, as well as computational - will be considered for publication. Submission of laboratory investigations that shed light on disease mechanisms is encouraged. Special Issues, edited by Guest Editors to cover new and rapidly-moving areas, will include invited mini-reviews. Occasional mini-reviews in especially timely areas will be considered for publication, without invitation, outside of Special Issues; these un-solicited mini-reviews can be submitted without invitation but must be of very high quality. Clinical studies will also be published if they provide new information about organization or actions of the nervous system, or provide new insights into the neurobiology of disease. NSL does not publish case reports.