Using Greedy algorithm: DBSCAN revisited II.

Shi-hong Yue, Ping Li, Ji-dong Guo, Shui-geng Zhou
{"title":"Using Greedy algorithm: DBSCAN revisited II.","authors":"Shi-hong Yue,&nbsp;Ping Li,&nbsp;Ji-dong Guo,&nbsp;Shui-geng Zhou","doi":"10.1631/jzus.2004.1405","DOIUrl":null,"url":null,"abstract":"<p><p>The density-based clustering algorithm presented is different from the classical Density-Based Spatial Clustering of Applications with Noise (DBSCAN) (Ester et al., 1996), and has the following advantages: first, Greedy algorithm substitutes for R(*)-tree (Bechmann et al., 1990) in DBSCAN to index the clustering space so that the clustering time cost is decreased to great extent and I/O memory load is reduced as well; second, the merging condition to approach to arbitrary-shaped clusters is designed carefully so that a single threshold can distinguish correctly all clusters in a large spatial dataset though some density-skewed clusters live in it. Finally, authors investigate a robotic navigation and test two artificial datasets by the proposed algorithm to verify its effectiveness and efficiency.</p>","PeriodicalId":85042,"journal":{"name":"Journal of Zhejiang University. Science","volume":"5 11","pages":"1405-12"},"PeriodicalIF":0.0000,"publicationDate":"2004-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1631/jzus.2004.1405","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Zhejiang University. Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1631/jzus.2004.1405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

The density-based clustering algorithm presented is different from the classical Density-Based Spatial Clustering of Applications with Noise (DBSCAN) (Ester et al., 1996), and has the following advantages: first, Greedy algorithm substitutes for R(*)-tree (Bechmann et al., 1990) in DBSCAN to index the clustering space so that the clustering time cost is decreased to great extent and I/O memory load is reduced as well; second, the merging condition to approach to arbitrary-shaped clusters is designed carefully so that a single threshold can distinguish correctly all clusters in a large spatial dataset though some density-skewed clusters live in it. Finally, authors investigate a robotic navigation and test two artificial datasets by the proposed algorithm to verify its effectiveness and efficiency.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用Greedy算法:DBSCAN再次访问II。
本文提出的基于密度的聚类算法不同于经典的带噪声应用的基于密度的空间聚类(DBSCAN) (Ester et al., 1996),具有以下优点:首先,贪心算法替代了DBSCAN中的R(*)-tree (Bechmann et al., 1990)对聚类空间进行索引,从而大大降低了聚类时间成本,减少了I/O内存负载;其次,仔细设计了逼近任意形状聚类的合并条件,使单个阈值能够正确区分大型空间数据集中的所有聚类,尽管其中存在一些密度倾斜的聚类;最后,以机器人导航为例,对两个人工数据集进行了测试,验证了算法的有效性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synergetic effects for p-nitrophenol abatement using a combined activated carbon adsorption-electrooxidation process. Self-desiccation mechanism of high-performance concrete. Preparation of natural alpha-tocopherol from non-alpha-tocopherols. Comparison of volatile and semivolatile compounds from commercial cigarette by supercritical fluid extraction and simultaneous distillation extraction. Land degradation, government subsidy, and smallholders' conservation decision: the case of the loess plateau in China.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1