Ionotropic glutamate receptor recognition and activation.

Robert E Oswald
{"title":"Ionotropic glutamate receptor recognition and activation.","authors":"Robert E Oswald","doi":"10.1016/S0065-3233(04)68009-0","DOIUrl":null,"url":null,"abstract":"<p><p>Ionotropic glutamate receptors are the major excitatory neurotransmitters in mammalian brain but are found throughout the animal kingdom as well as in plants and bacteria. A great deal of progress in understanding the structure of these essential neurotransmitter receptors has been made since the first examples were cloned and sequenced in 1989. The atomic structure of the ligand-binding domain of several ionotropic glutamate receptors has been determined, and a great deal of progress has been made in relating the structural properties of the binding site to the function of the intact receptor. In addition, the identification of glutamate receptors from a wide variety of organisms ranging from several types of bacteria to Arabidopsis to a range of animal species has made glutamate receptors a molecular laboratory for studying the evolution of proteins. The fact that glutamate receptors are a particularly ancient intercellular signaling molecule suggests a potential role in the transition from single celled to multicellular organisms. This review focuses on the structure and dynamics of ionotropic glutamate receptors and their relation to the function and evolution of these proteins.</p>","PeriodicalId":51216,"journal":{"name":"Advances in Protein Chemistry","volume":"68 ","pages":"313-49"},"PeriodicalIF":0.0000,"publicationDate":"2004-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0065-3233(04)68009-0","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Protein Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/S0065-3233(04)68009-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

Ionotropic glutamate receptors are the major excitatory neurotransmitters in mammalian brain but are found throughout the animal kingdom as well as in plants and bacteria. A great deal of progress in understanding the structure of these essential neurotransmitter receptors has been made since the first examples were cloned and sequenced in 1989. The atomic structure of the ligand-binding domain of several ionotropic glutamate receptors has been determined, and a great deal of progress has been made in relating the structural properties of the binding site to the function of the intact receptor. In addition, the identification of glutamate receptors from a wide variety of organisms ranging from several types of bacteria to Arabidopsis to a range of animal species has made glutamate receptors a molecular laboratory for studying the evolution of proteins. The fact that glutamate receptors are a particularly ancient intercellular signaling molecule suggests a potential role in the transition from single celled to multicellular organisms. This review focuses on the structure and dynamics of ionotropic glutamate receptors and their relation to the function and evolution of these proteins.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
嗜电离性谷氨酸受体的识别和激活。
嗜离子性谷氨酸受体是哺乳动物大脑中主要的兴奋性神经递质,但在动物界以及植物和细菌中都有发现。自1989年第一批样本被克隆和测序以来,在了解这些基本神经递质受体的结构方面取得了很大进展。几种异离子型谷氨酸受体的配体结合域的原子结构已经确定,结合位点的结构性质与完整受体功能的关系也取得了很大进展。此外,从多种细菌到拟南芥再到一系列动物物种的各种生物中,谷氨酸受体的鉴定使谷氨酸受体成为研究蛋白质进化的分子实验室。谷氨酸受体是一种特别古老的细胞间信号分子,这一事实表明,谷氨酸受体在单细胞生物向多细胞生物的转变中具有潜在的作用。本文就谷氨酸受体的结构、动力学及其与谷氨酸受体功能和进化的关系作一综述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Elastin. RETRACTED: Theory, Methods, and Applications of Coevolution in Protein Contact Prediction Carrageenan and Furcellaran Structural basis of effector regulation and signal termination in heterotrimeric Galpha proteins. How do receptors activate G proteins?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1