Plastocyanin redox kinetics in spinach chloroplasts: evidence for disequilibrium in the high potential chain.

Helmut Kirchhoff, Mark Aurel Schöttler, Julia Maurer, Engelbert Weis
{"title":"Plastocyanin redox kinetics in spinach chloroplasts: evidence for disequilibrium in the high potential chain.","authors":"Helmut Kirchhoff,&nbsp;Mark Aurel Schöttler,&nbsp;Julia Maurer,&nbsp;Engelbert Weis","doi":"10.1016/j.bbabio.2004.08.004","DOIUrl":null,"url":null,"abstract":"<p><p>Reduction kinetics of cytochrome f, plastocyanin (PC) and P(700) ('high-potential chain') in thylakoids from spinach were followed after pre-oxidation by a saturating light pulse. We describe a novel approach to follow PC redox kinetics from deconvolution of 810-860 nm absorption changes. The equilibration between the redox-components was analyzed by plotting the redox state of cytochrome f and PC against that of P(700). In thylakoids with (1) diminished electron transport rate (adjusted with a cytochrome bf inhibitor) or (2) de-stacked grana, cytochrome f and PC relaxed close to their thermodynamic equilibriums with P(700). In stacked thylakoids with non-inhibited electron transport, the equilibration plots were complex and non-hyperbolic, suggesting that during fast electron flux, the 'high-potential chain' does not homogeneously equilibrate throughout the membrane. Apparent equilibrium constants <5 were calculated, which are below the thermodynamic equilibrium known for the 'high potential chain'. The disequilibrium found in stacked thylakoids with high electron fluxes is explained by restricted long-range PC diffusion. We develop a model assuming that about 30% of Photosystem I mainly located in grana end-membranes and margins rapidly equilibrate with cytochrome f via short-distance transluminal PC diffusion, while long-range lateral PC migration between grana cores and distant stroma lamellae is restricted. Implications for the electron flux control are discussed.</p>","PeriodicalId":8811,"journal":{"name":"Biochimica et biophysica acta","volume":"1659 1","pages":"63-72"},"PeriodicalIF":0.0000,"publicationDate":"2004-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.bbabio.2004.08.004","citationCount":"74","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.bbabio.2004.08.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 74

Abstract

Reduction kinetics of cytochrome f, plastocyanin (PC) and P(700) ('high-potential chain') in thylakoids from spinach were followed after pre-oxidation by a saturating light pulse. We describe a novel approach to follow PC redox kinetics from deconvolution of 810-860 nm absorption changes. The equilibration between the redox-components was analyzed by plotting the redox state of cytochrome f and PC against that of P(700). In thylakoids with (1) diminished electron transport rate (adjusted with a cytochrome bf inhibitor) or (2) de-stacked grana, cytochrome f and PC relaxed close to their thermodynamic equilibriums with P(700). In stacked thylakoids with non-inhibited electron transport, the equilibration plots were complex and non-hyperbolic, suggesting that during fast electron flux, the 'high-potential chain' does not homogeneously equilibrate throughout the membrane. Apparent equilibrium constants <5 were calculated, which are below the thermodynamic equilibrium known for the 'high potential chain'. The disequilibrium found in stacked thylakoids with high electron fluxes is explained by restricted long-range PC diffusion. We develop a model assuming that about 30% of Photosystem I mainly located in grana end-membranes and margins rapidly equilibrate with cytochrome f via short-distance transluminal PC diffusion, while long-range lateral PC migration between grana cores and distant stroma lamellae is restricted. Implications for the electron flux control are discussed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
菠菜叶绿体中的质体青素氧化还原动力学:高电位链不平衡的证据。
研究了饱和光脉冲预氧化后菠菜类囊体中细胞色素f、质体青素(PC)和P(700)(“高电位链”)的还原动力学。我们描述了一种从810-860 nm吸收变化的反褶积中跟踪PC氧化还原动力学的新方法。通过绘制细胞色素f和PC相对于P(700)的氧化还原状态来分析氧化还原组分之间的平衡。在类囊体中,(1)电子传递速率降低(用细胞色素bf抑制剂调节)或(2)颗粒去堆叠,细胞色素f和PC松弛接近它们与P(700)的热力学平衡。在电子传递不受抑制的堆叠类囊体中,平衡图复杂且非双曲线,这表明在快速电子通量期间,“高电位链”在整个膜上并不均匀地平衡。表观平衡常数
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Temperature dependence of diffusion in model and live cell membranes characterized by imaging fluorescence correlation spectroscopy. Searching for a successful HDL-based treatment strategy. Identification of cis-regulatory variations in the IL6R gene through the inheritance assessment of allelic transcription. CD1d favors MHC neighborhood, GM1 ganglioside proximity and low detergent sensitive membrane regions on the surface of B lymphocytes. Retraction notice to "Transcriptional regulation of the AT1 receptor gene in immortalized human trophoblast cells."[Biochim. Biophys. Acta 1680 (2004) 158-170].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1