{"title":"Inactivation-deficient human skeletal muscle Na+ channels (hNav1.4-L443C/A444W) in stably transfected HEK-293 cells.","authors":"S-Y Wang, E Moczydlowski, G Wang","doi":"10.1080/10606820490514914","DOIUrl":null,"url":null,"abstract":"<p><p>After transient transfection of an hNav1.4-L443C/A444W mutant clone, HEK-293 cells exhibited large inactivation-deficient Na+currents. We subsequently established a stable cell line expressing robust inactivation-deficient Na+currents. Persistent late Na+currents were far more sensitive to block by class 1 anti-arrhythmic flecainide, mexiletine, propafenone, and amiodarone at 10 microM than peak Na+currents. Such results support a hypothesis that persistent late Na+currents are in vivo targets for class 1 anti-arrhythmic drugs at their therapeutic plasma concentrations. Stably transfected HEK-293 cells expressing robust inactivation-deficient Na+currents will likely be suitable for screening novel drugs that target persistent late Na+currents selectively.</p>","PeriodicalId":20928,"journal":{"name":"Receptors & channels","volume":"10 3-4","pages":"131-8"},"PeriodicalIF":0.0000,"publicationDate":"2004-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10606820490514914","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Receptors & channels","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10606820490514914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
After transient transfection of an hNav1.4-L443C/A444W mutant clone, HEK-293 cells exhibited large inactivation-deficient Na+currents. We subsequently established a stable cell line expressing robust inactivation-deficient Na+currents. Persistent late Na+currents were far more sensitive to block by class 1 anti-arrhythmic flecainide, mexiletine, propafenone, and amiodarone at 10 microM than peak Na+currents. Such results support a hypothesis that persistent late Na+currents are in vivo targets for class 1 anti-arrhythmic drugs at their therapeutic plasma concentrations. Stably transfected HEK-293 cells expressing robust inactivation-deficient Na+currents will likely be suitable for screening novel drugs that target persistent late Na+currents selectively.