{"title":"Plant nuclear envelope proteins.","authors":"Annkatrin Rose, Shalaka Patel, Iris Meier","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Compared to research in the animal field, the plant NE has been clearly under-investigated. The available data so far indicate similarities as well as striking differences that raise interesting questions about the function and evolution of the NE in different kingdoms. Despite a seemingly similar structure and organization of the NE, many of the proteins that are integral components of the animal NE appear to lack homologues in plant cells. The sequencing of the Arabidopsis genome has not led to the identification of homologues of animal NE components, but has indicated that the plant NE must have a distinct protein composition different from that found in metazoan cells. Besides providing a selective barrier between the nucleoplasm and the cytoplasm, the plant NE functions as a scaffold for chromatin but the scaffolding components are not identical to those found in animal cells. The NE comprises an MTOC in higher plant cells, a striking difference to the organization of microtubule nucleation in other eukaryotic cells. Nuclear pores are present in the plant NE, but identifiable orthologues of most animal and yeast nucleoporins are presently lacking. The transport pathway through the nuclear pores via the action of karyopherins and the Ran cycle is conserved in plant cells. Interestingly, RanGAP is sequestered to the NE in plant cells and animal cells, yet the targeting domains and mechanisms of attachment are different between the two kingdoms. At present, only a few proteins localized at the plant NE have been identified molecularly. Future research will have to expand the list of known protein components involved in building a functional plant NE.</p>","PeriodicalId":22134,"journal":{"name":"Symposia of the Society for Experimental Biology","volume":" 56","pages":"69-88"},"PeriodicalIF":0.0000,"publicationDate":"2004-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposia of the Society for Experimental Biology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Compared to research in the animal field, the plant NE has been clearly under-investigated. The available data so far indicate similarities as well as striking differences that raise interesting questions about the function and evolution of the NE in different kingdoms. Despite a seemingly similar structure and organization of the NE, many of the proteins that are integral components of the animal NE appear to lack homologues in plant cells. The sequencing of the Arabidopsis genome has not led to the identification of homologues of animal NE components, but has indicated that the plant NE must have a distinct protein composition different from that found in metazoan cells. Besides providing a selective barrier between the nucleoplasm and the cytoplasm, the plant NE functions as a scaffold for chromatin but the scaffolding components are not identical to those found in animal cells. The NE comprises an MTOC in higher plant cells, a striking difference to the organization of microtubule nucleation in other eukaryotic cells. Nuclear pores are present in the plant NE, but identifiable orthologues of most animal and yeast nucleoporins are presently lacking. The transport pathway through the nuclear pores via the action of karyopherins and the Ran cycle is conserved in plant cells. Interestingly, RanGAP is sequestered to the NE in plant cells and animal cells, yet the targeting domains and mechanisms of attachment are different between the two kingdoms. At present, only a few proteins localized at the plant NE have been identified molecularly. Future research will have to expand the list of known protein components involved in building a functional plant NE.