Siqi Yang, Junhao Sun, Shihao Wang, Limei E, Shuai Zhang and Xiubo Jiang
{"title":"Association of exposure to polycyclic aromatic hydrocarbons with thyroid hormones in adolescents and adults, and the influence of the iodine status†","authors":"Siqi Yang, Junhao Sun, Shihao Wang, Limei E, Shuai Zhang and Xiubo Jiang","doi":"10.1039/D3EM00135K","DOIUrl":null,"url":null,"abstract":"<p >Some studies of endocrine-disrupting polycyclic aromatic hydrocarbon (PAH) exposure and thyroid hormones (THs) are inconclusive. To assess the associations between PAHs and THs, and the influence of the iodine status on PAHs–THs, we employed 648 adolescents (12–19 years old) and 2691 adults from the National Health and Nutrition Examination Survey 2007–2008 and 2011–2012. PAH metabolites [1-hydroxynaphthalene (1-NAP), 2-NAP, 1-hydroxyphenanthrene (1-PHE), 2-PHE, 3-PHE, 2-hydroxyfluorene (2-FLU), 3-FLU, 9-FLU, and 1-hydroxypyrene (1-PYR)], THs [total and free thyroxine (TT4 and FT4), total and free triiodothyronine (TT3 and FT3), thyroid stimulating hormone (TSH), and thyroglobulin (Tg)], peripheral deiodinase activity (<em>G</em><small><sub>D</sub></small>) and thyroid's secretory capacity (<em>G</em><small><sub>T</sub></small>) were involved. Multiple linear regression and weighted quantile sum (WQS) regression models were used to assess PAH–TH associations and the interaction between PAHs and the iodine status. Stratification analyses were conducted based on sex, smoking and iodine status. For adolescents, in a multivariable-adjusted regression model (<em>β</em>; 95% CI), 1-PHE (4.08%; 1.01%, and 7.25%), 2-PHE (3.98%; 0.70%, and 7.25%) and 9-FLU (3.77%; 1.10%, 7.47%) were positively correlated with TT3; 3-PHE and 1-PYR interacted with the iodine status (<em>P</em>-int < 0.05); 9-FLU was positively correlated with <em>G</em><small><sub>D</sub></small> in both sexes. Combined exposure to PAHs was positively associated with Tg (0.137; 0.030, and 0.243), and negatively correlated with TSH (−0.087; −0.166, and −0.008). For adults, 2-NAP was positively correlated with FT3 (0.90%; 0.20%, and 1.61%), FT4 (1.82%; 0.70%, and 2.94%), TT3 (1.31%; 0.10%, and 2.63%), TT4 (2.12%; 0.90%, and 3.36%) and <em>G</em><small><sub>T</sub></small> (2.22%; 1.01%, and 3.46%), but negatively correlated with TSH (−4.97%; −8.33%, and −1.49%); 1-NAP interacted with the iodine status (<em>P</em>-int < 0.05); 1-PHE was inversely correlated with TT3 in males; 2-PHE was positively correlated with TT3 in females. Combined exposure to PAHs was positively associated with FT3 (0.008; 0.001, and 0.014). Combined exposure to PAHs was positively associated with FT3, TT3 and <em>G</em><small><sub>D</sub></small>, and negatively correlated with FT4, TT4 and <em>G</em><small><sub>T</sub></small> in non-smoking adults; but positively associated with Tg (<em>β</em> = 0.140; 95% CI: 0.042, 0.237) in smoking adults. Our results indicated that combined and individual PAH exposure might be related to THs, and the iodine status had an influence on PAH–TH associations. These associations were not identical between adolescents and adults, and there were sex and smoking status differences.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 9","pages":" 1449-1463"},"PeriodicalIF":4.3000,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Processes & Impacts","FirstCategoryId":"93","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/em/d3em00135k","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Some studies of endocrine-disrupting polycyclic aromatic hydrocarbon (PAH) exposure and thyroid hormones (THs) are inconclusive. To assess the associations between PAHs and THs, and the influence of the iodine status on PAHs–THs, we employed 648 adolescents (12–19 years old) and 2691 adults from the National Health and Nutrition Examination Survey 2007–2008 and 2011–2012. PAH metabolites [1-hydroxynaphthalene (1-NAP), 2-NAP, 1-hydroxyphenanthrene (1-PHE), 2-PHE, 3-PHE, 2-hydroxyfluorene (2-FLU), 3-FLU, 9-FLU, and 1-hydroxypyrene (1-PYR)], THs [total and free thyroxine (TT4 and FT4), total and free triiodothyronine (TT3 and FT3), thyroid stimulating hormone (TSH), and thyroglobulin (Tg)], peripheral deiodinase activity (GD) and thyroid's secretory capacity (GT) were involved. Multiple linear regression and weighted quantile sum (WQS) regression models were used to assess PAH–TH associations and the interaction between PAHs and the iodine status. Stratification analyses were conducted based on sex, smoking and iodine status. For adolescents, in a multivariable-adjusted regression model (β; 95% CI), 1-PHE (4.08%; 1.01%, and 7.25%), 2-PHE (3.98%; 0.70%, and 7.25%) and 9-FLU (3.77%; 1.10%, 7.47%) were positively correlated with TT3; 3-PHE and 1-PYR interacted with the iodine status (P-int < 0.05); 9-FLU was positively correlated with GD in both sexes. Combined exposure to PAHs was positively associated with Tg (0.137; 0.030, and 0.243), and negatively correlated with TSH (−0.087; −0.166, and −0.008). For adults, 2-NAP was positively correlated with FT3 (0.90%; 0.20%, and 1.61%), FT4 (1.82%; 0.70%, and 2.94%), TT3 (1.31%; 0.10%, and 2.63%), TT4 (2.12%; 0.90%, and 3.36%) and GT (2.22%; 1.01%, and 3.46%), but negatively correlated with TSH (−4.97%; −8.33%, and −1.49%); 1-NAP interacted with the iodine status (P-int < 0.05); 1-PHE was inversely correlated with TT3 in males; 2-PHE was positively correlated with TT3 in females. Combined exposure to PAHs was positively associated with FT3 (0.008; 0.001, and 0.014). Combined exposure to PAHs was positively associated with FT3, TT3 and GD, and negatively correlated with FT4, TT4 and GT in non-smoking adults; but positively associated with Tg (β = 0.140; 95% CI: 0.042, 0.237) in smoking adults. Our results indicated that combined and individual PAH exposure might be related to THs, and the iodine status had an influence on PAH–TH associations. These associations were not identical between adolescents and adults, and there were sex and smoking status differences.
期刊介绍:
Environmental Science: Processes & Impacts publishes high quality papers in all areas of the environmental chemical sciences, including chemistry of the air, water, soil and sediment. We welcome studies on the environmental fate and effects of anthropogenic and naturally occurring contaminants, both chemical and microbiological, as well as related natural element cycling processes.