Preparation of PVA@PEI@BAC@CNC composite nanofibrous film with high efficiency filtration for PM2.5

IF 2.5 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Frontiers of Materials Science Pub Date : 2023-09-20 DOI:10.1007/s11706-023-0659-3
Jingda Huang, Yi Wang, Yuxin Cai, Yipeng Liang, Shite Lin, Enfu Wang, Jinhuan Zhong, Wenbiao Zhang, Kuichuan Sheng
{"title":"Preparation of PVA@PEI@BAC@CNC composite nanofibrous film with high efficiency filtration for PM2.5","authors":"Jingda Huang,&nbsp;Yi Wang,&nbsp;Yuxin Cai,&nbsp;Yipeng Liang,&nbsp;Shite Lin,&nbsp;Enfu Wang,&nbsp;Jinhuan Zhong,&nbsp;Wenbiao Zhang,&nbsp;Kuichuan Sheng","doi":"10.1007/s11706-023-0659-3","DOIUrl":null,"url":null,"abstract":"<div><p>It is still a challenge to prepare a water- and polymer-based electrospun air filter film with high efficiency filtration, low pressure drop, and good mechanical properties. To address this issue, polyvinyl alcohol (PVA) was employed as the main material, mixing polyethyleneimine (PEI), bamboo-based activated carbon (BAC) and cellulose nanocrystal (CNC) to construct the air filter film by electrostatic electrospinning. In this system, the negatively charged BAC and CNC are fixed in the system through bonding with the positively charged PEI, showing a double adsorption effect. One is the mechanical filtration of the porous network structure constructed by PVA@PEI electrospun nanofibers, and the other is the electrostatic adsorption of PM2.5 on the surface of BAC and CNC. It is significant that the resulting composite air filter displays a high filtration efficiency of 95.86%, a pressure drop of only 59 Pa, and good thermal stability. Moreover, the introduced methyltrimethoxysilane (MTMS) endows it with good water-resistance. Given these excellent performances, this system can provide theoretical and technical references for the development of water- and polymer-based electrospun air filter film.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"17 4","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11706-023-0659-3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

It is still a challenge to prepare a water- and polymer-based electrospun air filter film with high efficiency filtration, low pressure drop, and good mechanical properties. To address this issue, polyvinyl alcohol (PVA) was employed as the main material, mixing polyethyleneimine (PEI), bamboo-based activated carbon (BAC) and cellulose nanocrystal (CNC) to construct the air filter film by electrostatic electrospinning. In this system, the negatively charged BAC and CNC are fixed in the system through bonding with the positively charged PEI, showing a double adsorption effect. One is the mechanical filtration of the porous network structure constructed by PVA@PEI electrospun nanofibers, and the other is the electrostatic adsorption of PM2.5 on the surface of BAC and CNC. It is significant that the resulting composite air filter displays a high filtration efficiency of 95.86%, a pressure drop of only 59 Pa, and good thermal stability. Moreover, the introduced methyltrimethoxysilane (MTMS) endows it with good water-resistance. Given these excellent performances, this system can provide theoretical and technical references for the development of water- and polymer-based electrospun air filter film.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高效过滤PM2.5的PVA@PEI@BAC@CNC复合纳米纤维膜的制备
制备一种过滤效率高、压降低、力学性能好的水基和聚合物基电纺空气过滤膜仍然是一个挑战。为解决这一问题,以聚乙烯醇(PVA)为主要材料,混合聚乙烯亚胺(PEI)、竹基活性炭(BAC)和纤维素纳米晶(CNC),采用静电纺丝法制备空气过滤膜。在该体系中,带负电的BAC和CNC通过与带正电的PEI结合固定在体系中,表现出双重吸附效果。一种是PVA@PEI静电纺纳米纤维构建的多孔网络结构的机械过滤,另一种是PM2.5在BAC和CNC表面的静电吸附。值得注意的是,该复合空气过滤器的过滤效率高达95.86%,压降仅为59 Pa,热稳定性好。此外,引入的甲基三甲氧基硅烷(MTMS)使其具有良好的耐水性。该体系具有良好的性能,可为水基和聚合物基静电纺空气过滤膜的开发提供理论和技术参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers of Materials Science
Frontiers of Materials Science MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
4.20
自引率
3.70%
发文量
515
期刊介绍: Frontiers of Materials Science is a peer-reviewed international journal that publishes high quality reviews/mini-reviews, full-length research papers, and short Communications recording the latest pioneering studies on all aspects of materials science. It aims at providing a forum to promote communication and exchange between scientists in the worldwide materials science community. The subjects are seen from international and interdisciplinary perspectives covering areas including (but not limited to): Biomaterials including biomimetics and biomineralization; Nano materials; Polymers and composites; New metallic materials; Advanced ceramics; Materials modeling and computation; Frontier materials synthesis and characterization; Novel methods for materials manufacturing; Materials performance; Materials applications in energy, information and biotechnology.
期刊最新文献
Revealing effects of powder reuse for LPBF-fabricated NiTi shape memory alloys Construction of a novel fluorescent nanoenzyme based on lanthanides for tumor theranostics In vitro evaluation of Zn–10Mg–xHA composites with the core–shell structure Femtosecond laser-induced graphene for temperature and ultrasensitive flexible strain sensing Adsorption and photocatalytic degradation performances of methyl orange-imprinted polysiloxane particles using TiO2 as matrix
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1