{"title":"Lipotoxicity, an imbalance between lipogenesis de novo and fatty acid oxidation.","authors":"C Lelliott, A J Vidal-Puig","doi":"10.1038/sj.ijo.0802854","DOIUrl":null,"url":null,"abstract":"<p><p>Obesity and type 2 diabetes mellitus are the major noncommunicable public health problem of the 21st century. The best strategy to tackle this problem is to develop strategies to prevent/treat obesity. However, it is becoming clear that despite successful research identifying weight regulatory pathways, the development of the obesity epidemic is outpacing scientific progress. The lack of success controlling the obesity epidemic in an aging population will result in another subsequent uncontrolled epidemic of complications. Our research focuses on the mechanisms causing lipotoxicity aiming to identify suitable strategies to prevent or at least retard the development of the metabolic syndrome. Previous work using transgenic and knockout mouse models has shown an interplay between white adipose tissue and skeletal muscle linking fatty acid (FA) synthesis with reciprocal effects on FA oxidation. Work from our lab and others suggests that defective adipose tissue is a key link between obesity, insulin resistance and type 2 diabetes mellitus by promoting the development of lipotoxicity in peripheral tissues. We propose a series of models to describe the process by which the adipose tissue could react to an energy-rich environment and responds depending on genetic and physiological factors, impacting on the functions of other peripheral tissues. We suggest that by examining hypotheses that encompass multiple organs and the partitioning of energy between these organs, a suitable strategy can be devised for the treatment of chronic obesity.</p>","PeriodicalId":14227,"journal":{"name":"International journal of obesity and related metabolic disorders : journal of the International Association for the Study of Obesity","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1038/sj.ijo.0802854","citationCount":"193","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of obesity and related metabolic disorders : journal of the International Association for the Study of Obesity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/sj.ijo.0802854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 193
Abstract
Obesity and type 2 diabetes mellitus are the major noncommunicable public health problem of the 21st century. The best strategy to tackle this problem is to develop strategies to prevent/treat obesity. However, it is becoming clear that despite successful research identifying weight regulatory pathways, the development of the obesity epidemic is outpacing scientific progress. The lack of success controlling the obesity epidemic in an aging population will result in another subsequent uncontrolled epidemic of complications. Our research focuses on the mechanisms causing lipotoxicity aiming to identify suitable strategies to prevent or at least retard the development of the metabolic syndrome. Previous work using transgenic and knockout mouse models has shown an interplay between white adipose tissue and skeletal muscle linking fatty acid (FA) synthesis with reciprocal effects on FA oxidation. Work from our lab and others suggests that defective adipose tissue is a key link between obesity, insulin resistance and type 2 diabetes mellitus by promoting the development of lipotoxicity in peripheral tissues. We propose a series of models to describe the process by which the adipose tissue could react to an energy-rich environment and responds depending on genetic and physiological factors, impacting on the functions of other peripheral tissues. We suggest that by examining hypotheses that encompass multiple organs and the partitioning of energy between these organs, a suitable strategy can be devised for the treatment of chronic obesity.