Etomoxir regulates the differentiation of male germ cells by specifically reducing H3K27ac level.

Q2 Biochemistry, Genetics and Molecular Biology BMC Developmental Biology Pub Date : 2021-02-01 DOI:10.1186/s12861-020-00237-x
Yushan Xu, Jue Xie
{"title":"Etomoxir regulates the differentiation of male germ cells by specifically reducing H3K27ac level.","authors":"Yushan Xu,&nbsp;Jue Xie","doi":"10.1186/s12861-020-00237-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Fatty acid oxidation plays an important role in a variety of developing and mature organ systems. However, the role of this metabolic pathway in different stages of testis development remains unknown. Here, we elucidate the mechanisms by which fatty acid oxidation regulates the maintenance and differentiation of gonocytes and spermatogonial stem cells.</p><p><strong>Results: </strong>During E13.5-E15.5, male germ cells gradually enter the mitotic arrest phase, while the expression of CPT1A, a rate-limiting enzyme for fatty acid oxidation, gradually increases. Therefore, we treated pregnant mice (E13.5 to E15.5) with etomoxir, which is an inhibitor of CPT1A. Etomoxir-treated mice showed no difference in embryonic morphology; however, etomoxir-treated male gonocytes exited mitotic arrest, and cells of the gonad underwent apoptosis. In addition, etomoxir-treated mice at P7 displayed impaired homing of spermatogonia and increased cell apoptosis. We further demonstrated that inhibition of fatty acid oxidation in gonads was associated with gonocyte differentiation events and the histone modification H3K27ac.</p><p><strong>Conclusions: </strong>Inhibiting fatty acid oxidation can specifically reduce the level of H3K27ac in the reproductive crest, which may be the cause of the down-regulation of male differentiation-specific gene expression, which ultimately leads to the male primordial germ cells exited from mitotic arrest. Our work uncovers metabolic reprogramming during male gonadal development, revealing that it plays an important role in the maintenance of gonocytes in a differentiated and quiescent state during foetal testis development.</p>","PeriodicalId":9130,"journal":{"name":"BMC Developmental Biology","volume":" ","pages":"5"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12861-020-00237-x","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Developmental Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12861-020-00237-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 8

Abstract

Background: Fatty acid oxidation plays an important role in a variety of developing and mature organ systems. However, the role of this metabolic pathway in different stages of testis development remains unknown. Here, we elucidate the mechanisms by which fatty acid oxidation regulates the maintenance and differentiation of gonocytes and spermatogonial stem cells.

Results: During E13.5-E15.5, male germ cells gradually enter the mitotic arrest phase, while the expression of CPT1A, a rate-limiting enzyme for fatty acid oxidation, gradually increases. Therefore, we treated pregnant mice (E13.5 to E15.5) with etomoxir, which is an inhibitor of CPT1A. Etomoxir-treated mice showed no difference in embryonic morphology; however, etomoxir-treated male gonocytes exited mitotic arrest, and cells of the gonad underwent apoptosis. In addition, etomoxir-treated mice at P7 displayed impaired homing of spermatogonia and increased cell apoptosis. We further demonstrated that inhibition of fatty acid oxidation in gonads was associated with gonocyte differentiation events and the histone modification H3K27ac.

Conclusions: Inhibiting fatty acid oxidation can specifically reduce the level of H3K27ac in the reproductive crest, which may be the cause of the down-regulation of male differentiation-specific gene expression, which ultimately leads to the male primordial germ cells exited from mitotic arrest. Our work uncovers metabolic reprogramming during male gonadal development, revealing that it plays an important role in the maintenance of gonocytes in a differentiated and quiescent state during foetal testis development.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
依托莫西通过特异性降低H3K27ac水平调节男性生殖细胞的分化。
背景:脂肪酸氧化在多种发育和成熟的器官系统中起着重要作用。然而,这种代谢途径在睾丸发育的不同阶段所起的作用尚不清楚。在这里,我们阐明了脂肪酸氧化调节性腺细胞和精原干细胞的维持和分化的机制。结果:e13.5 ~ e15.5期,雄性生殖细胞逐渐进入有丝分裂停滞期,脂肪酸氧化限速酶CPT1A的表达逐渐增加。因此,我们用依托莫西治疗妊娠小鼠(E13.5 ~ E15.5),依托莫西是一种CPT1A抑制剂。依托莫西处理小鼠的胚胎形态无差异;然而,经依托莫西处理的雄性性腺细胞出现有丝分裂阻滞,性腺细胞发生凋亡。此外,经依托莫西治疗的P7小鼠显示精原细胞归巢受损,细胞凋亡增加。我们进一步证明,性腺脂肪酸氧化的抑制与性腺细胞分化事件和组蛋白修饰H3K27ac有关。结论:抑制脂肪酸氧化可特异性降低生殖嵴H3K27ac水平,这可能是雄性分化特异性基因表达下调的原因,最终导致雄性原始生殖细胞从有丝分裂停滞中退出。我们的工作揭示了男性性腺发育过程中的代谢重编程,揭示了它在维持胎儿睾丸发育过程中卵泡细胞处于分化和静止状态中起着重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Developmental Biology
BMC Developmental Biology 生物-发育生物学
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: BMC Developmental Biology is an open access, peer-reviewed journal that considers articles on the development, growth, differentiation and regeneration of multicellular organisms, including molecular, cellular, tissue, organ and whole organism research.
期刊最新文献
Dexamethasone priming enhances stemness and immunomodulatory property of tissue-specific human mesenchymal stem cells. Comparative transcriptome analysis uncovers cell wall reorganization and repressed cell division during cotton fiber initiation. Msx1 haploinsufficiency modifies the Pax9-deficient cardiovascular phenotype. Identification of reference genes for gene expression studies among different developmental stages of murine hearts. The miR-200 family in normal mammary gland development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1