An Intron of Invertebrate Microphthalmia Transcription Factor Gene Is Evolved from a Longer Ancestral Sequence.

IF 1.7 4区 生物学 Q4 EVOLUTIONARY BIOLOGY Evolutionary Bioinformatics Pub Date : 2021-01-22 eCollection Date: 2021-01-01 DOI:10.1177/1176934320988558
Jun-Ming Mao, Yong Wang, Liu Yang, Qin Yao, Ke-Ping Chen
{"title":"An Intron of Invertebrate Microphthalmia Transcription Factor Gene Is Evolved from a Longer Ancestral Sequence.","authors":"Jun-Ming Mao,&nbsp;Yong Wang,&nbsp;Liu Yang,&nbsp;Qin Yao,&nbsp;Ke-Ping Chen","doi":"10.1177/1176934320988558","DOIUrl":null,"url":null,"abstract":"<p><p>Introns are highly variable in number and size. Sequence simulation is an effective method to elucidate intron evolution patterns. Previously, we have reported that introns are more likely to evolve through mutation-and-deletion (MD) rather than through mutation-and-insertion (MI). In the present study, we further studied evolution models by allowing insertion in the MD model and by allowing deletion in the MI model at various frequencies. It was found that all deletion-biased models with proper parameter settings could generate sequences with attributes matchable to 16 invertebrate introns from the microphthalmia transcription factor gene, whereas all insertion-biased models with any parameter settings failed to generate such sequences. We conclude that the examined invertebrate introns may have evolved from a longer ancestral sequence in a deletion-biased pattern. The constructed models are useful for studying the evolution of introns from other genes and/or from other taxonomic groups. (C++ scripts of all deletion- and insertion-biased models are available upon request.).</p>","PeriodicalId":50472,"journal":{"name":"Evolutionary Bioinformatics","volume":"17 ","pages":"1176934320988558"},"PeriodicalIF":1.7000,"publicationDate":"2021-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1176934320988558","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1177/1176934320988558","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introns are highly variable in number and size. Sequence simulation is an effective method to elucidate intron evolution patterns. Previously, we have reported that introns are more likely to evolve through mutation-and-deletion (MD) rather than through mutation-and-insertion (MI). In the present study, we further studied evolution models by allowing insertion in the MD model and by allowing deletion in the MI model at various frequencies. It was found that all deletion-biased models with proper parameter settings could generate sequences with attributes matchable to 16 invertebrate introns from the microphthalmia transcription factor gene, whereas all insertion-biased models with any parameter settings failed to generate such sequences. We conclude that the examined invertebrate introns may have evolved from a longer ancestral sequence in a deletion-biased pattern. The constructed models are useful for studying the evolution of introns from other genes and/or from other taxonomic groups. (C++ scripts of all deletion- and insertion-biased models are available upon request.).

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无脊椎动物小眼症转录因子基因内含子由较长的祖先序列进化而来。
内含子的数量和大小变化很大。序列模拟是阐明内含子进化模式的有效方法。以前,我们报道过内含子更可能通过突变和删除(MD)而不是通过突变和插入(MI)进化。在本研究中,我们通过允许在MD模型中插入和允许在MI模型中删除不同频率的进化模型进一步研究了进化模型。结果发现,在参数设置适当的情况下,所有缺失偏倚模型都能生成与来自小眼转录因子基因的16个无脊椎动物内含子属性匹配的序列,而在任何参数设置的情况下,所有插入偏倚模型都不能生成此类序列。我们的结论是,研究的无脊椎动物内含子可能是从一个更长的祖先序列中以缺失偏倚的模式进化而来的。所构建的模型可用于研究来自其他基因和/或其他分类群的内含子的进化。(所有删除和插入偏向模型的c++脚本可根据要求提供。)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Evolutionary Bioinformatics
Evolutionary Bioinformatics 生物-进化生物学
CiteScore
4.20
自引率
0.00%
发文量
25
审稿时长
12 months
期刊介绍: Evolutionary Bioinformatics is an open access, peer reviewed international journal focusing on evolutionary bioinformatics. The journal aims to support understanding of organismal form and function through use of molecular, genetic, genomic and proteomic data by giving due consideration to its evolutionary context.
期刊最新文献
Phylodynamic Investigation of Yellow Fever Virus Sheds New Insight on Geographic Dispersal Across Africa. In silico Characterization of a Hypothetical Protein (PBJ89160.1) from Neisseria meningitidis Exhibits a New Insight on Nutritional Virulence and Molecular Docking to Uncover a Therapeutic Target. Comparative Phylogenetic Analysis and Protein Prediction Reveal the Taxonomy and Diverse Distribution of Virulence Factors in Foodborne Clostridium Strains. An Effective Computational Method for Predicting Self-Interacting Proteins Based on VGGNet Convolutional Neural Network and Gray-Level Co-occurrence Matrix. Comprehensive Profiling of Transcriptome and m6A Epitranscriptome Uncovers the Neurotoxic Effects of Yunaconitine on HT22 Cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1