Scoping Review of Healthcare Literature on Mobile, Wearable, and Textile Sensing Technology for Continuous Monitoring.

IF 5.9 Q1 Computer Science Journal of Healthcare Informatics Research Pub Date : 2021-01-01 Epub Date: 2021-02-01 DOI:10.1007/s41666-020-00087-z
N Hernandez, L Castro, J Medina-Quero, J Favela, L Michan, W Ben Mortenson
{"title":"Scoping Review of Healthcare Literature on Mobile, Wearable, and Textile Sensing Technology for Continuous Monitoring.","authors":"N Hernandez,&nbsp;L Castro,&nbsp;J Medina-Quero,&nbsp;J Favela,&nbsp;L Michan,&nbsp;W Ben Mortenson","doi":"10.1007/s41666-020-00087-z","DOIUrl":null,"url":null,"abstract":"<p><p>Remote monitoring of health can reduce frequent hospitalisations, diminishing the burden on the healthcare system and cost to the community. Patient monitoring helps identify symptoms associated with diseases or disease-driven disorders, which makes it an essential element of medical diagnoses, clinical interventions, and rehabilitation treatments for severe medical conditions. This monitoring can be expensive and time-consuming and provide an incomplete picture of the state of the patient. In the last decade, there has been a significant increase in the adoption of mobile and wearable devices, along with the introduction of smart textile solutions that offer the possibility of continuous monitoring. These alternatives fuel a technology shift in healthcare, one that involves the continuous tracking and monitoring of individuals. This scoping review examines how mobile, wearable, and textile sensing technology have been permeating healthcare by offering alternate solutions to challenging issues, such as personalised prescriptions or home-based secondary prevention. To do so, we have selected 222 healthcare literature articles published from 2007 to 2019 and reviewed them following the PRISMA process under the schema of a scoping review framework. Overall, our findings show a recent increase in research on mobile sensing technology to address patient monitoring, reflected by 128 articles published in journals and 19 articles in conference proceedings between 2014 and 2019, which represents 57.65% and 8.55% respectively of all included articles.</p>","PeriodicalId":36444,"journal":{"name":"Journal of Healthcare Informatics Research","volume":null,"pages":null},"PeriodicalIF":5.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41666-020-00087-z","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Healthcare Informatics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41666-020-00087-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/2/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 10

Abstract

Remote monitoring of health can reduce frequent hospitalisations, diminishing the burden on the healthcare system and cost to the community. Patient monitoring helps identify symptoms associated with diseases or disease-driven disorders, which makes it an essential element of medical diagnoses, clinical interventions, and rehabilitation treatments for severe medical conditions. This monitoring can be expensive and time-consuming and provide an incomplete picture of the state of the patient. In the last decade, there has been a significant increase in the adoption of mobile and wearable devices, along with the introduction of smart textile solutions that offer the possibility of continuous monitoring. These alternatives fuel a technology shift in healthcare, one that involves the continuous tracking and monitoring of individuals. This scoping review examines how mobile, wearable, and textile sensing technology have been permeating healthcare by offering alternate solutions to challenging issues, such as personalised prescriptions or home-based secondary prevention. To do so, we have selected 222 healthcare literature articles published from 2007 to 2019 and reviewed them following the PRISMA process under the schema of a scoping review framework. Overall, our findings show a recent increase in research on mobile sensing technology to address patient monitoring, reflected by 128 articles published in journals and 19 articles in conference proceedings between 2014 and 2019, which represents 57.65% and 8.55% respectively of all included articles.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
连续监测的移动、可穿戴和纺织传感技术的医疗文献综述。
对健康状况进行远程监测可以减少频繁的住院治疗,减轻卫生保健系统的负担和社区的成本。患者监测有助于识别与疾病或疾病驱动障碍相关的症状,这使其成为医学诊断、临床干预和严重疾病康复治疗的基本要素。这种监测既昂贵又费时,而且不能完全了解患者的状态。在过去十年中,移动和可穿戴设备的采用显著增加,同时引入了智能纺织品解决方案,提供了持续监控的可能性。这些替代方案推动了医疗保健领域的技术变革,其中涉及对个人的持续跟踪和监控。本综述考察了移动、可穿戴和纺织传感技术如何通过提供个性化处方或家庭二级预防等具有挑战性问题的替代解决方案,渗透到医疗保健领域。为此,我们选择了2007年至2019年发表的222篇医疗保健文献,并在范围审查框架的模式下按照PRISMA流程对其进行了审查。总体而言,我们的研究结果显示,最近针对移动传感技术的研究有所增加,以解决患者监测问题,2014年至2019年期间在期刊上发表了128篇文章,在会议论文集中发表了19篇文章,分别占所有纳入文章的57.65%和8.55%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Healthcare Informatics Research
Journal of Healthcare Informatics Research Computer Science-Computer Science Applications
CiteScore
13.60
自引率
1.70%
发文量
12
期刊介绍: Journal of Healthcare Informatics Research serves as a publication venue for the innovative technical contributions highlighting analytics, systems, and human factors research in healthcare informatics.Journal of Healthcare Informatics Research is concerned with the application of computer science principles, information science principles, information technology, and communication technology to address problems in healthcare, and everyday wellness. Journal of Healthcare Informatics Research highlights the most cutting-edge technical contributions in computing-oriented healthcare informatics.  The journal covers three major tracks: (1) analytics—focuses on data analytics, knowledge discovery, predictive modeling; (2) systems—focuses on building healthcare informatics systems (e.g., architecture, framework, design, engineering, and application); (3) human factors—focuses on understanding users or context, interface design, health behavior, and user studies of healthcare informatics applications.   Topics include but are not limited to: ·         healthcare software architecture, framework, design, and engineering;·         electronic health records·         medical data mining·         predictive modeling·         medical information retrieval·         medical natural language processing·         healthcare information systems·         smart health and connected health·         social media analytics·         mobile healthcare·         medical signal processing·         human factors in healthcare·         usability studies in healthcare·         user-interface design for medical devices and healthcare software·         health service delivery·         health games·         security and privacy in healthcare·         medical recommender system·         healthcare workflow management·         disease profiling and personalized treatment·         visualization of medical data·         intelligent medical devices and sensors·         RFID solutions for healthcare·         healthcare decision analytics and support systems·         epidemiological surveillance systems and intervention modeling·         consumer and clinician health information needs, seeking, sharing, and use·         semantic Web, linked data, and ontology·         collaboration technologies for healthcare·         assistive and adaptive ubiquitous computing technologies·         statistics and quality of medical data·         healthcare delivery in developing countries·         health systems modeling and simulation·         computer-aided diagnosis
期刊最新文献
Extracting Pulmonary Nodules and Nodule Characteristics from Radiology Reports of Lung Cancer Screening Patients Using Transformer Models Clinical Information Retrieval: A Literature Review Supporting Fair and Efficient Emergency Medical Services in a Large Heterogeneous Region Validation of Electrocardiogram Based Photoplethysmogram Generated Using U-Net Based Generative Adversarial Networks Depression Detection on Social Media: A Classification Framework and Research Challenges and Opportunities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1