{"title":"The expanding scope of amyloid signalling.","authors":"Asen Daskalov, Sven J Saupe","doi":"10.1080/19336896.2021.1874791","DOIUrl":null,"url":null,"abstract":"<p><p>Formation of higher-order supramolecular complexes has emerged as a common principle underlying activity of a number of immune and regulated cell-death signalling pathways in animals, plants and fungi. Some of these signalosomes employ functional amyloid motifs in their assembly process. The description of such systems in fungi finds its origin in earlier studies on a fungal prion termed [Het-s], originally identified as a non-Mendelian cytoplasmic infectious element. Janine Beisson has been a key contributor to such early studies. Recent work on this and related systems offers a more integrated view framing this prion in a broader picture including related signalling systems described in animals. We propose here an auto-commentary centred on three recent studies on amyloid signalling in microbes. Collectively, these studies increase our understanding of fold conservation in functional amyloids and the structural basis of seeding, highlight the relation of fungal amyloid motifs to mammalian RHIM (RIP homotypic interaction motif) and expand the concept of Nod-like receptor-based amyloid signalosomes to the prokaryote reign.</p>","PeriodicalId":54585,"journal":{"name":"Prion","volume":"15 1","pages":"21-28"},"PeriodicalIF":1.9000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336896.2021.1874791","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prion","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/19336896.2021.1874791","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
Formation of higher-order supramolecular complexes has emerged as a common principle underlying activity of a number of immune and regulated cell-death signalling pathways in animals, plants and fungi. Some of these signalosomes employ functional amyloid motifs in their assembly process. The description of such systems in fungi finds its origin in earlier studies on a fungal prion termed [Het-s], originally identified as a non-Mendelian cytoplasmic infectious element. Janine Beisson has been a key contributor to such early studies. Recent work on this and related systems offers a more integrated view framing this prion in a broader picture including related signalling systems described in animals. We propose here an auto-commentary centred on three recent studies on amyloid signalling in microbes. Collectively, these studies increase our understanding of fold conservation in functional amyloids and the structural basis of seeding, highlight the relation of fungal amyloid motifs to mammalian RHIM (RIP homotypic interaction motif) and expand the concept of Nod-like receptor-based amyloid signalosomes to the prokaryote reign.
期刊介绍:
Prion is the first international peer-reviewed open access journal to focus exclusively on protein folding and misfolding, protein assembly disorders, protein-based and structural inheritance. The goal is to foster communication and rapid exchange of information through timely publication of important results using traditional as well as electronic formats. The overriding criteria for publication in Prion are originality, scientific merit and general interest.