{"title":"Aging of the Suprachiasmatic Nucleus, <i>CIRCLONSA Syndrome</i>, Implications for Regenerative Medicine and Restoration of the Master Body Clock.","authors":"Victor Björk","doi":"10.1089/rej.2020.2388","DOIUrl":null,"url":null,"abstract":"<p><p>The suprachiasmatic nucleus (SCN) in the brain is the master regulator of the circadian clocks throughout the human body. With increasing age the circadian clock in humans and other mammals becomes increasingly disorganized leading to a large number of more or less well-categorized problems. While a lot of aging research has focused on the peripheral clocks in tissues across organisms, it remains a paramount task to quantify aging of the most important master clock, the human SCN. Furthermore, a pipeline needs to be developed with therapies to mitigate the systemic cellular circadian dysfunction in the elderly and ultimately repair and reverse aging of the SCN itself. A disease classification for the aging SCN, <i>Circadian Clock Neuronal Senile Atrophy</i> (CIRCLONSA syndrome), would improve research funding and goal-oriented biotechnological entrepreneurship.</p>","PeriodicalId":20979,"journal":{"name":"Rejuvenation research","volume":"24 4","pages":"274-282"},"PeriodicalIF":2.2000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rejuvenation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/rej.2020.2388","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/4/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
The suprachiasmatic nucleus (SCN) in the brain is the master regulator of the circadian clocks throughout the human body. With increasing age the circadian clock in humans and other mammals becomes increasingly disorganized leading to a large number of more or less well-categorized problems. While a lot of aging research has focused on the peripheral clocks in tissues across organisms, it remains a paramount task to quantify aging of the most important master clock, the human SCN. Furthermore, a pipeline needs to be developed with therapies to mitigate the systemic cellular circadian dysfunction in the elderly and ultimately repair and reverse aging of the SCN itself. A disease classification for the aging SCN, Circadian Clock Neuronal Senile Atrophy (CIRCLONSA syndrome), would improve research funding and goal-oriented biotechnological entrepreneurship.
期刊介绍:
Rejuvenation Research publishes cutting-edge, peer-reviewed research on rejuvenation therapies in the laboratory and the clinic. The Journal focuses on key explorations and advances that may ultimately contribute to slowing or reversing the aging process, and covers topics such as cardiovascular aging, DNA damage and repair, cloning, and cell immortalization and senescence.
Rejuvenation Research coverage includes:
Cell immortalization and senescence
Pluripotent stem cells
DNA damage/repair
Gene targeting, gene therapy, and genomics
Growth factors and nutrient supply/sensing
Immunosenescence
Comparative biology of aging
Tissue engineering
Late-life pathologies (cardiovascular, neurodegenerative and others)
Public policy and social context.