Activity Segmentation Using Wearable Sensors for DVT/PE Risk Detection.

Austin Gentry, William M Mongan, Brent Lee, Owen Montgomery, Kapil R Dandekar
{"title":"Activity Segmentation Using Wearable Sensors for DVT/PE Risk Detection.","authors":"Austin Gentry, William M Mongan, Brent Lee, Owen Montgomery, Kapil R Dandekar","doi":"10.1109/compsac.2019.10252","DOIUrl":null,"url":null,"abstract":"<p><p>Using a wearable electromyography (EMG) and an accelerometer sensor, classification of subject activity state (<i>i.e</i>., walking, sitting, standing, or ankle circles) enables detection of prolonged \"negative\" activity states in which the calf muscles do not facilitate blood flow return via the deep veins of the leg. By employing machine learning classification on a multi-sensor wearable device, we are able to classify human subject state between \"positive\" and \"negative\" activities, and among each activity state, with greater than 95% accuracy. Some negative activity states cannot be accurately discriminated due to their similar presentation from an accelerometer (<i>i.e</i>., standing <i>vs</i>. sitting); however, it is desirable to separate these states to better inform the risk of developing a Deep Vein Thrombosis (DVT). Augmentation with a wearable EMG sensor improves separability of these activities by 30%.</p>","PeriodicalId":74502,"journal":{"name":"Proceedings : Annual International Computer Software and Applications Conference. COMPSAC","volume":"2019 ","pages":"477-483"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7884185/pdf/nihms-1669001.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings : Annual International Computer Software and Applications Conference. COMPSAC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/compsac.2019.10252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/7/9 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Using a wearable electromyography (EMG) and an accelerometer sensor, classification of subject activity state (i.e., walking, sitting, standing, or ankle circles) enables detection of prolonged "negative" activity states in which the calf muscles do not facilitate blood flow return via the deep veins of the leg. By employing machine learning classification on a multi-sensor wearable device, we are able to classify human subject state between "positive" and "negative" activities, and among each activity state, with greater than 95% accuracy. Some negative activity states cannot be accurately discriminated due to their similar presentation from an accelerometer (i.e., standing vs. sitting); however, it is desirable to separate these states to better inform the risk of developing a Deep Vein Thrombosis (DVT). Augmentation with a wearable EMG sensor improves separability of these activities by 30%.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用可穿戴传感器进行活动分段,以检测深静脉血栓/肺栓塞风险。
通过使用可穿戴肌电图(EMG)和加速度传感器,对受试者的活动状态(即行走、坐姿、站姿或踝关节绕圈)进行分类,可以检测出小腿肌肉不能促进血液通过腿部深静脉回流的长时间 "消极 "活动状态。通过在多传感器可穿戴设备上采用机器学习分类法,我们能够在 "积极 "和 "消极 "活动之间以及每种活动状态之间对人体状态进行分类,准确率超过 95%。由于加速度计的表现形式相似(如站立与坐姿),一些负面活动状态无法准确区分;然而,我们希望将这些状态区分开来,以便更好地了解深静脉血栓(DVT)的发病风险。使用可穿戴肌电图传感器可将这些活动的可分离性提高 30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Survey of Conversational Agents and Their Applications for Self-Management of Chronic Conditions. Towards Developing a Voice-activated Self-monitoring Application (VoiS) for Adults with Diabetes and Hypertension. Message from the 2022 Program Chairs-in-Chief Welcome - from Sorel Reisman COMPSAC Standing Committee Chair Message from the Standing Committee Vice Chairs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1