{"title":"iMAP: integration of multiple single-cell datasets by adversarial paired transfer networks.","authors":"Dongfang Wang, Siyu Hou, Lei Zhang, Xiliang Wang, Baolin Liu, Zemin Zhang","doi":"10.1186/s13059-021-02280-8","DOIUrl":null,"url":null,"abstract":"<p><p>The integration of single-cell RNA-sequencing datasets from multiple sources is critical for deciphering cell-to-cell heterogeneities and interactions in complex biological systems. We present a novel unsupervised batch effect removal framework, called iMAP, based on both deep autoencoders and generative adversarial networks. Compared with current methods, iMAP shows superior, robust, and scalable performance in terms of both reliably detecting the batch-specific cells and effectively mixing distributions of the batch-shared cell types. Applying iMAP to tumor microenvironment datasets from two platforms, Smart-seq2 and 10x Genomics, we find that iMAP can leverage the powers of both platforms to discover novel cell-cell interactions.</p>","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":null,"pages":null},"PeriodicalIF":12.3000,"publicationDate":"2021-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7891139/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-021-02280-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
The integration of single-cell RNA-sequencing datasets from multiple sources is critical for deciphering cell-to-cell heterogeneities and interactions in complex biological systems. We present a novel unsupervised batch effect removal framework, called iMAP, based on both deep autoencoders and generative adversarial networks. Compared with current methods, iMAP shows superior, robust, and scalable performance in terms of both reliably detecting the batch-specific cells and effectively mixing distributions of the batch-shared cell types. Applying iMAP to tumor microenvironment datasets from two platforms, Smart-seq2 and 10x Genomics, we find that iMAP can leverage the powers of both platforms to discover novel cell-cell interactions.
期刊介绍:
Genome Biology is a leading research journal that focuses on the study of biology and biomedicine from a genomic and post-genomic standpoint. The journal consistently publishes outstanding research across various areas within these fields.
With an impressive impact factor of 12.3 (2022), Genome Biology has earned its place as the 3rd highest-ranked research journal in the Genetics and Heredity category, according to Thomson Reuters. Additionally, it is ranked 2nd among research journals in the Biotechnology and Applied Microbiology category. It is important to note that Genome Biology is the top-ranking open access journal in this category.
In summary, Genome Biology sets a high standard for scientific publications in the field, showcasing cutting-edge research and earning recognition among its peers.