Antimalarial Activity of Nigella sativa L. Seed Extracts and Selection of Resistance in Plasmodium berghei ANKA in a Mouse Model.

IF 1.1 Q4 MICROBIOLOGY Journal of Pathogens Pub Date : 2021-02-03 eCollection Date: 2021-01-01 DOI:10.1155/2021/6165950
Rahma Udu, Job Oyweri, Jeremiah Gathirwa
{"title":"Antimalarial Activity of <i>Nigella sativa</i> L. Seed Extracts and Selection of Resistance in <i>Plasmodium berghei</i> ANKA in a Mouse Model.","authors":"Rahma Udu,&nbsp;Job Oyweri,&nbsp;Jeremiah Gathirwa","doi":"10.1155/2021/6165950","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Chemotherapy plays a crucial role in malaria control. However, the main obstacle to treatment has been the rise of parasite resistance to most antimalarial drugs. Artemisinin-based combination therapies (ACTs) remain the most effective antimalarial medicines available today. However, malaria parasite tolerance to ACTs is now increasingly prevalent especially in Southeast Asia presenting the danger of the spread of ACTs resistance to other parts of the world. Consequently, this creates the need for alternative effective antimalarials. Therefore, this study sought out to determine antimalarial potential, safety, and resistance development of the extracts in a mouse model.</p><p><strong>Method: </strong>Methanolic and ethyl acetate extracts were obtained by solvent extraction. The extracts were assayed for acute toxicity <i>in vivo</i>. Additionally, the two extracts were evaluated for antimalarial activity <i>in vivo</i> against <i>Plasmodium berghei</i> ANKA strain by the 4-day suppressive test at 500, 250, and 125 mg/kg/day. Packed cell volume was evaluated to determine anemia manifestation. Finally, continuous drug pressure experiment at 500 mg/kg and DNA amplification via PCR were conducted. The amplicons underwent through Sanger sequencing.</p><p><strong>Results: </strong>There was no toxicity realized in the animals at 2000 mg/kg. Importantly, high parasitemia suppression of 75.52% and 75.30% using a dose of 500 mg/kg of methanolic and ethyl acetate extracts, respectively, was noted. The extracts were able to reverse packed cell volume reduction. <i>Nigella sativa</i>-resistant phenotype was selected as delayed parasite clearance. However, there was no change in the nucleotide sequences of <i>Pb</i>MDR1 and <i>Pb</i>CRT genes.</p><p><strong>Conclusion: </strong>The results provide room for future exploitation of the plant as an antimalarial.</p>","PeriodicalId":16788,"journal":{"name":"Journal of Pathogens","volume":"2021 ","pages":"6165950"},"PeriodicalIF":1.1000,"publicationDate":"2021-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7875626/pdf/","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pathogens","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/6165950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 5

Abstract

Background: Chemotherapy plays a crucial role in malaria control. However, the main obstacle to treatment has been the rise of parasite resistance to most antimalarial drugs. Artemisinin-based combination therapies (ACTs) remain the most effective antimalarial medicines available today. However, malaria parasite tolerance to ACTs is now increasingly prevalent especially in Southeast Asia presenting the danger of the spread of ACTs resistance to other parts of the world. Consequently, this creates the need for alternative effective antimalarials. Therefore, this study sought out to determine antimalarial potential, safety, and resistance development of the extracts in a mouse model.

Method: Methanolic and ethyl acetate extracts were obtained by solvent extraction. The extracts were assayed for acute toxicity in vivo. Additionally, the two extracts were evaluated for antimalarial activity in vivo against Plasmodium berghei ANKA strain by the 4-day suppressive test at 500, 250, and 125 mg/kg/day. Packed cell volume was evaluated to determine anemia manifestation. Finally, continuous drug pressure experiment at 500 mg/kg and DNA amplification via PCR were conducted. The amplicons underwent through Sanger sequencing.

Results: There was no toxicity realized in the animals at 2000 mg/kg. Importantly, high parasitemia suppression of 75.52% and 75.30% using a dose of 500 mg/kg of methanolic and ethyl acetate extracts, respectively, was noted. The extracts were able to reverse packed cell volume reduction. Nigella sativa-resistant phenotype was selected as delayed parasite clearance. However, there was no change in the nucleotide sequences of PbMDR1 and PbCRT genes.

Conclusion: The results provide room for future exploitation of the plant as an antimalarial.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
黑草种子提取物在小鼠模型中的抗疟活性及对伯氏疟原虫ANKA的抗性筛选
背景:化疗在疟疾控制中起着关键作用。然而,治疗的主要障碍是寄生虫对大多数抗疟疾药物的耐药性上升。以青蒿素为基础的联合疗法仍然是目前可用的最有效的抗疟疾药物。然而,疟疾寄生虫对以青蒿素为基础的联合疗法的耐药性现在日益普遍,特别是在东南亚,这使以青蒿素为基础的联合疗法的耐药性有向世界其他地区蔓延的危险。因此,这就产生了对替代性有效抗疟药物的需求。因此,本研究试图在小鼠模型中确定提取物的抗疟疾潜力、安全性和耐药性发展。方法:采用溶剂萃取法提取乙醇提取物和乙酸乙酯提取物。对提取物进行体内急性毒性试验。此外,通过500、250和125 mg/kg/d的体内抑制试验,评价两种提取物对伯氏疟原虫ANKA菌株的抗疟活性。评估堆积细胞体积以确定贫血的表现。最后进行500 mg/kg连续药压实验,PCR扩增DNA。对扩增子进行Sanger测序。结果:2000 mg/kg剂量对动物无毒性作用。重要的是,注意到使用500 mg/kg的甲醇和乙酸乙酯提取物分别抑制75.52%和75.30%的高寄生虫血症。提取物能够逆转堆积细胞体积的减少。选择黑穗病抗性表型作为延迟寄生虫清除。然而,PbMDR1和PbCRT基因的核苷酸序列没有变化。结论:该研究结果为该植物抗疟药物的进一步开发利用提供了依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Pathogens
Journal of Pathogens MICROBIOLOGY-
自引率
0.00%
发文量
4
审稿时长
15 weeks
期刊最新文献
Fermented Polyherbal Formulation Restored Ricinoleic Acid-Induced Diarrhea in Sprague Dawley Rats and Exhibited In Vitro Antibacterial Effect on Multiple Antibiotic-Resistant Gastrointestinal Pathogens. Establishment of a STING-Deficient HepG2 Cell Line through CRISPR/Cas9 System and Evaluation of Its Effects on Salmonella Replication. Detection of Biofilm Production and Antibiotic Susceptibility Pattern among Clinically Isolated Staphylococcus aureus. Seroprevalence of Human Brucellosis among Syrian Refugees in Jordan, 2022 Characteristics of Escherichia coli Isolated from Intestinal Microbiota Children of 0–5 Years Old in the Commune of Abomey-Calavi
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1