Design and engineering of artificial metalloproteins: from de novo metal coordination to catalysis.

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Protein Engineering Design & Selection Pub Date : 2021-02-15 DOI:10.1093/protein/gzab003
Andreas S Klein, Cathleen Zeymer
{"title":"Design and engineering of artificial metalloproteins: from de novo metal coordination to catalysis.","authors":"Andreas S Klein,&nbsp;Cathleen Zeymer","doi":"10.1093/protein/gzab003","DOIUrl":null,"url":null,"abstract":"<p><p>Metalloproteins are essential to sustain life. Natural evolution optimized them for intricate structural, regulatory and catalytic functions that cannot be fulfilled by either a protein or a metal ion alone. In order to understand this synergy and the complex design principles behind the natural systems, simpler mimics were engineered from the bottom up by installing de novo metal sites in either natural or fully designed, artificial protein scaffolds. This review focuses on key challenges associated with this approach. We discuss how proteins can be equipped with binding sites that provide an optimal coordination environment for a metal cofactor of choice, which can be a single metal ion or a complex multinuclear cluster. Furthermore, we highlight recent studies in which artificial metalloproteins were engineered towards new functions, including electron transfer and catalysis. In this context, the powerful combination of de novo protein design and directed evolution is emphasized for metalloenzyme development.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Engineering Design & Selection","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/protein/gzab003","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 9

Abstract

Metalloproteins are essential to sustain life. Natural evolution optimized them for intricate structural, regulatory and catalytic functions that cannot be fulfilled by either a protein or a metal ion alone. In order to understand this synergy and the complex design principles behind the natural systems, simpler mimics were engineered from the bottom up by installing de novo metal sites in either natural or fully designed, artificial protein scaffolds. This review focuses on key challenges associated with this approach. We discuss how proteins can be equipped with binding sites that provide an optimal coordination environment for a metal cofactor of choice, which can be a single metal ion or a complex multinuclear cluster. Furthermore, we highlight recent studies in which artificial metalloproteins were engineered towards new functions, including electron transfer and catalysis. In this context, the powerful combination of de novo protein design and directed evolution is emphasized for metalloenzyme development.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人造金属蛋白的设计与工程:从从头金属配位到催化。
金属蛋白对维持生命至关重要。自然进化优化了它们复杂的结构、调节和催化功能,这是蛋白质或金属离子无法单独完成的。为了理解这种协同作用和自然系统背后复杂的设计原则,通过在天然或完全设计的人造蛋白质支架中安装全新的金属位点,从下到上设计了更简单的模拟。这篇综述的重点是与该方法相关的主要挑战。我们讨论了蛋白质如何配备结合位点,为选择的金属辅助因子提供最佳的配位环境,金属辅助因子可以是单个金属离子或复杂的多核簇。此外,我们还重点介绍了最近研究中人造金属蛋白的新功能,包括电子转移和催化。在此背景下,金属酶的开发强调了从头蛋白质设计和定向进化的强大结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Protein Engineering Design & Selection
Protein Engineering Design & Selection 生物-生化与分子生物学
CiteScore
3.30
自引率
4.20%
发文量
14
审稿时长
6-12 weeks
期刊介绍: Protein Engineering, Design and Selection (PEDS) publishes high-quality research papers and review articles relevant to the engineering, design and selection of proteins for use in biotechnology and therapy, and for understanding the fundamental link between protein sequence, structure, dynamics, function, and evolution.
期刊最新文献
TIMED-Design: flexible and accessible protein sequence design with convolutional neural networks. Correction to: De novo design of a polycarbonate hydrolase. Interactive computational and experimental approaches improve the sensitivity of periplasmic binding protein-based nicotine biosensors for measurements in biofluids. Design of functional intrinsically disordered proteins. The shortest path method (SPM) webserver for computational enzyme design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1