Application of the hierarchical bootstrap to multi-level data in neuroscience.

Neurons, behavior, data analysis and theory Pub Date : 2020-01-01 Epub Date: 2020-07-21
Varun Saravanan, Gordon J Berman, Samuel J Sober
{"title":"Application of the hierarchical bootstrap to multi-level data in neuroscience.","authors":"Varun Saravanan,&nbsp;Gordon J Berman,&nbsp;Samuel J Sober","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>A common feature in many neuroscience datasets is the presence of hierarchical data structures, most commonly recording the activity of multiple neurons in multiple animals across multiple trials. Accordingly, the measurements constituting the dataset are not independent, even though the traditional statistical analyses often applied in such cases (e.g., Student's t-test) treat them as such. The hierarchical bootstrap has been shown to be an effective tool to accurately analyze such data and while it has been used extensively in the statistical literature, its use is not widespread in neuroscience - despite the ubiquity of hierarchical datasets. In this paper, we illustrate the intuitiveness and utility of this approach to analyze hierarchically nested datasets. We use simulated neural data to show that traditional statistical tests can result in a false positive rate of over 45%, even if the Type-I error rate is set at 5%. While summarizing data across non-independent points (or lower levels) can potentially fix this problem, this approach greatly reduces the statistical power of the analysis. The hierarchical bootstrap, when applied sequentially over the levels of the hierarchical structure, keeps the Type-I error rate within the intended bound and retains more statistical power than summarizing methods. We conclude by demonstrating the effectiveness of the method in two real-world examples, first analyzing singing data in male Bengalese finches (<i>Lonchura striata</i> var. <i>domestica</i>) and second quantifying changes in behavior under optogenetic control in flies (<i>Drosophila melanogaster</i>).</p>","PeriodicalId":74289,"journal":{"name":"Neurons, behavior, data analysis and theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7906290/pdf/nihms-1630846.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurons, behavior, data analysis and theory","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/7/21 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A common feature in many neuroscience datasets is the presence of hierarchical data structures, most commonly recording the activity of multiple neurons in multiple animals across multiple trials. Accordingly, the measurements constituting the dataset are not independent, even though the traditional statistical analyses often applied in such cases (e.g., Student's t-test) treat them as such. The hierarchical bootstrap has been shown to be an effective tool to accurately analyze such data and while it has been used extensively in the statistical literature, its use is not widespread in neuroscience - despite the ubiquity of hierarchical datasets. In this paper, we illustrate the intuitiveness and utility of this approach to analyze hierarchically nested datasets. We use simulated neural data to show that traditional statistical tests can result in a false positive rate of over 45%, even if the Type-I error rate is set at 5%. While summarizing data across non-independent points (or lower levels) can potentially fix this problem, this approach greatly reduces the statistical power of the analysis. The hierarchical bootstrap, when applied sequentially over the levels of the hierarchical structure, keeps the Type-I error rate within the intended bound and retains more statistical power than summarizing methods. We conclude by demonstrating the effectiveness of the method in two real-world examples, first analyzing singing data in male Bengalese finches (Lonchura striata var. domestica) and second quantifying changes in behavior under optogenetic control in flies (Drosophila melanogaster).

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
层次自举法在神经科学多层次数据中的应用。
许多神经科学数据集的一个共同特征是分层数据结构的存在,最常见的是记录多个动物在多个试验中的多个神经元的活动。因此,构成数据集的测量并不是独立的,即使传统的统计分析经常应用于这种情况下(例如,学生t检验)将它们视为独立的。分层自举已被证明是准确分析此类数据的有效工具,虽然它已在统计文献中广泛使用,但它在神经科学中的使用并不广泛-尽管分层数据集无处不在。在本文中,我们说明了这种方法在分析分层嵌套数据集时的直观性和实用性。我们使用模拟神经数据表明,即使将i型错误率设置为5%,传统的统计测试也可能导致超过45%的假阳性率。虽然跨非独立点(或较低级别)汇总数据可能会解决这个问题,但这种方法大大降低了分析的统计能力。当分层引导在分层结构的各个层次上依次应用时,可以将Type-I错误率保持在预期的范围内,并且比汇总方法保留更多的统计能力。最后,我们通过两个现实世界的例子证明了该方法的有效性,首先分析了雄性孟加拉雀(Lonchura striata var. domestica)的鸣叫数据,其次量化了光遗传控制下果蝇(Drosophila melanogaster)的行为变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modelling Spontaneous Firing Activity of the Motor Cortex in a Spiking Neural Network with Random and Local Connectivity Expressive architectures enhance interpretability of dynamics-based neural population models Probabilistic representations as building blocks for higher-level vision Deep Direct Discriminative Decoders for High-dimensional Time-series Data Analysis Frontal effective connectivity increases with task demands and time on task: a Dynamic Causal Model of electrocorticogram in macaque monkeys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1