Measuring Absolute Membrane Potential Across Space and Time.

IF 10.4 1区 生物学 Q1 BIOPHYSICS Annual Review of Biophysics Pub Date : 2021-05-06 Epub Date: 2021-03-02 DOI:10.1146/annurev-biophys-062920-063555
Julia R Lazzari-Dean, Anneliese M M Gest, Evan W Miller
{"title":"Measuring Absolute Membrane Potential Across Space and Time.","authors":"Julia R Lazzari-Dean, Anneliese M M Gest, Evan W Miller","doi":"10.1146/annurev-biophys-062920-063555","DOIUrl":null,"url":null,"abstract":"<p><p>Membrane potential (V<sub>mem</sub>) is a fundamental biophysical signal present in all cells. V<sub>mem</sub> signals range in time from milliseconds to days, and they span lengths from microns to centimeters. V<sub>mem</sub> affects many cellular processes, ranging from neurotransmitter release to cell cycle control to tissue patterning. However, existing tools are not suitable for V<sub>mem</sub> quantification in many of these areas. In this review, we outline the diverse biology of V<sub>mem</sub>, drafting a wish list of features for a V<sub>mem</sub> sensing platform. We then use these guidelines to discuss electrode-based and optical platforms for interrogating V<sub>mem</sub>. On the one hand, electrode-based strategies exhibit excellent quantification but are most effective in short-term, cellular recordings. On the other hand, optical strategies provide easier access to diverse samples but generally only detect relative changes in V<sub>mem</sub>. By combining the respective strengths of these technologies, recent advances in optical quantification of absolute V<sub>mem</sub> enable new inquiries into V<sub>mem</sub> biology.</p>","PeriodicalId":50756,"journal":{"name":"Annual Review of Biophysics","volume":"50 ","pages":"447-468"},"PeriodicalIF":10.4000,"publicationDate":"2021-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8327616/pdf/nihms-1728629.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-biophys-062920-063555","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/3/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Membrane potential (Vmem) is a fundamental biophysical signal present in all cells. Vmem signals range in time from milliseconds to days, and they span lengths from microns to centimeters. Vmem affects many cellular processes, ranging from neurotransmitter release to cell cycle control to tissue patterning. However, existing tools are not suitable for Vmem quantification in many of these areas. In this review, we outline the diverse biology of Vmem, drafting a wish list of features for a Vmem sensing platform. We then use these guidelines to discuss electrode-based and optical platforms for interrogating Vmem. On the one hand, electrode-based strategies exhibit excellent quantification but are most effective in short-term, cellular recordings. On the other hand, optical strategies provide easier access to diverse samples but generally only detect relative changes in Vmem. By combining the respective strengths of these technologies, recent advances in optical quantification of absolute Vmem enable new inquiries into Vmem biology.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
跨时空测量绝对膜电位
膜电位(Vmem)是存在于所有细胞中的基本生物物理信号。膜电位信号的时间从毫秒到数天不等,长度从微米到厘米不等。Vmem 影响许多细胞过程,从神经递质释放到细胞周期控制再到组织形态。然而,现有的工具并不适合对其中许多领域的 Vmem 进行量化。在这篇综述中,我们概述了 Vmem 的多种生物学特性,并起草了一份 Vmem 传感平台的功能愿望清单。然后,我们将利用这些指南来讨论基于电极和光学的 Vmem 检测平台。一方面,基于电极的策略具有出色的量化能力,但在短期细胞记录中最为有效。另一方面,光学方法更容易获取不同样本,但通常只能检测 Vmem 的相对变化。通过结合这些技术各自的优势,最近在绝对 Vmem 光学定量方面取得的进展有助于对 Vmem 生物学进行新的探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual Review of Biophysics
Annual Review of Biophysics 生物-生物物理
CiteScore
21.00
自引率
0.00%
发文量
25
期刊介绍: The Annual Review of Biophysics, in publication since 1972, covers significant developments in the field of biophysics, including macromolecular structure, function and dynamics, theoretical and computational biophysics, molecular biophysics of the cell, physical systems biology, membrane biophysics, biotechnology, nanotechnology, and emerging techniques.
期刊最新文献
Mechanisms of Inheritance of Chromatin States: From Yeast to Human. Collapse and Protein Folding: Should We Be Surprised that Biothermodynamics Works So Well? Protein Modeling with DEER Spectroscopy. Biophysical Principles Emerging from Experiments on Protein-Protein Association and Aggregation. Ancestral Reconstruction and the Evolution of Protein Energy Landscapes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1