Amy M Crawford, Nicholas S Berry, Alicia L Carriquiry
{"title":"A clustering method for graphical handwriting components and statistical writership analysis.","authors":"Amy M Crawford, Nicholas S Berry, Alicia L Carriquiry","doi":"10.1002/sam.11488","DOIUrl":null,"url":null,"abstract":"<p><p>Handwritten documents can be characterized by their content or by the shape of the written characters. We focus on the problem of comparing a person's handwriting to a document of unknown provenance using the shape of the writing, as is done in forensic applications. To do so, we first propose a method for processing scanned handwritten documents to decompose the writing into small graphical structures, often corresponding to letters. We then introduce a measure of distance between two such structures that is inspired by the graph edit distance, and a measure of center for a collection of the graphs. These measurements are the basis for an outlier tolerant <i>K</i>-means algorithm to cluster the graphs based on structural attributes, thus creating a template for sorting new documents. Finally, we present a Bayesian hierarchical model to capture the propensity of a writer for producing graphs that are assigned to certain clusters. We illustrate the methods using documents from the Computer Vision Lab dataset. We show results of the identification task under the cluster assignments and compare to the same modeling, but with a less flexible grouping method that is not tolerant of incidental strokes or outliers.</p>","PeriodicalId":48684,"journal":{"name":"Statistical Analysis and Data Mining","volume":"14 1","pages":"41-60"},"PeriodicalIF":2.1000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7894190/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/sam.11488","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/11/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Handwritten documents can be characterized by their content or by the shape of the written characters. We focus on the problem of comparing a person's handwriting to a document of unknown provenance using the shape of the writing, as is done in forensic applications. To do so, we first propose a method for processing scanned handwritten documents to decompose the writing into small graphical structures, often corresponding to letters. We then introduce a measure of distance between two such structures that is inspired by the graph edit distance, and a measure of center for a collection of the graphs. These measurements are the basis for an outlier tolerant K-means algorithm to cluster the graphs based on structural attributes, thus creating a template for sorting new documents. Finally, we present a Bayesian hierarchical model to capture the propensity of a writer for producing graphs that are assigned to certain clusters. We illustrate the methods using documents from the Computer Vision Lab dataset. We show results of the identification task under the cluster assignments and compare to the same modeling, but with a less flexible grouping method that is not tolerant of incidental strokes or outliers.
期刊介绍:
Statistical Analysis and Data Mining addresses the broad area of data analysis, including statistical approaches, machine learning, data mining, and applications. Topics include statistical and computational approaches for analyzing massive and complex datasets, novel statistical and/or machine learning methods and theory, and state-of-the-art applications with high impact. Of special interest are articles that describe innovative analytical techniques, and discuss their application to real problems, in such a way that they are accessible and beneficial to domain experts across science, engineering, and commerce.
The focus of the journal is on papers which satisfy one or more of the following criteria:
Solve data analysis problems associated with massive, complex datasets
Develop innovative statistical approaches, machine learning algorithms, or methods integrating ideas across disciplines, e.g., statistics, computer science, electrical engineering, operation research.
Formulate and solve high-impact real-world problems which challenge existing paradigms via new statistical and/or computational models
Provide survey to prominent research topics.